Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(13): 17078-17090, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961226

RESUMO

Conductive polymers and their composite materials have attracted considerable interest due to their potential applications in sensors, actuators, drug delivery systems, and energy storage devices. Despite their wide range of applications, many challenges remain primarily with respect to the complex synthesis and time-consuming manufacturing steps that are often required in the fabrication process of various devices with conductive polymers. Here, we demonstrate the novel use of cold atmospheric plasma (CAP)-assisted deposition technologies as a solvent-free and scalable approach for in situ polymerization and direct deposition of conductive polypyrrole-silver (PPy-Ag) nanocomposites onto the desired substrates under atmospheric conditions. In this study, a systematic approach with different precursor composition mixtures containing pyrrole as the monomer and AgNO3 as the photoinitiator was investigated to assess the effect of precursor composition on the final chemical, electrical, and mechanical properties of the PPy-Ag nanocomposite thin-film coatings which were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and cyclic bending tests. The characterizations indicated the possibility of fabricating PPy-Ag nanocomposite films with tunable degrees of polymerization and Ag nanoparticle loading by simply varying the percentage of AgNO3 in precursor composition mixtures. Finally, as a proof of concept, the potential use of the PPy-Ag nanocomposite films with different Ag nanoparticle loading percentages was assessed for humidity sensing by measuring their level of change in electrical resistance in the relative humidity range of 12-60%. It is envisioned that the developed CAP-assisted deposition technology can provide a new stepping stone toward scalable additive manufacturing of various functional nanocomposite films for different low-cost and flexible electronic applications.

2.
ACS Appl Mater Interfaces ; 13(30): 35961-35971, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313121

RESUMO

A fully roll-to-roll manufactured electrochemical sensor with high sensing and manufacturing reproducibility has been developed for the detection of nitroaromatic organophosphorus pesticides (NOPPs). This sensor is based on a flexible, screen-printed silver electrode modified with a graphene nanoplatelet (GNP) coating and a zirconia (ZrO2) coating. The combination of the metal oxide and the 2-D material provided advantageous electrocatalytic activity toward NOPPs. Manufacturing, scanning electron microscopy-scanning transmission electron microscopy image analysis, electrochemical surface characterization, and detection studies illustrated high sensitivity, selectivity, and stability (∼89% current signal retention after 30 days) of the platform. The enzymeless sensor enabled rapid response time (10 min) and noncomplex detection of NOPPs through voltammetry methods. Furthermore, the proposed platform was highly group-sensitive toward NOPPs (e.g., methyl parathion (MP) and fenitrothion) with a detection limit as low as 1 µM (0.2 ppm). The sensor exhibited a linear correlation between MP concentration and current response in a range from 1 µM (0.2 ppm) to 20 µM (4.2 ppm) and from 20 to 50 µM with an R2 of 0.992 and 0.991, respectively. Broadly, this work showcases the first application of GNPs/ZrO2 complex on flexible silver screen-printed electrodes fabricated by entirely roll-to-roll manufacturing for the detection of NOPPs.

3.
Annu Rev Biomed Eng ; 23: 433-459, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872519

RESUMO

Since aptamers were first reported in the early 2000s, research on their use for the detection of health-relevant analytical targets has exploded. This review article provides a brief overview of the most recent developments in the field of aptamer-based biosensors for global health applications. The review provides a description of general aptasensing principles and follows up with examples of recent reports of diagnostics-related applications. These applications include detection of proteins and small molecules, circulating cancer cells, whole-cell pathogens, extracellular vesicles, and tissue diagnostics. The review also discusses the main challenges that this growing technology faces in the quest of bringing these new devices from the laboratory to the market.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Saúde Global , Proteínas
4.
Mol Neurodegener ; 15(1): 49, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900375

RESUMO

BACKGROUND: α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology. METHODS: Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test. RESULTS: Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology. CONCLUSIONS: Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.


Assuntos
Agregação Patológica de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Animais , Humanos , Camundongos , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Sprague-Dawley
5.
ACS Sens ; 5(9): 2915-2924, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786375

RESUMO

Two-dimensional titanium carbide MXenes, Ti3C2Tx, possess high surface area coupled with metallic conductivity and potential for functionalization. These properties make them especially attractive for the highly sensitive room-temperature electrochemical detection of gas analytes. However, these extraordinary materials have not been thoroughly investigated for the detection of volatile organic compounds (VOCs), many of which hold high relevance for disease diagnostics and environmental protection. Furthermore, the insufficient interlayer spacing between MXene nanoflakes could limit their applicability and the use of heteroatoms as dopants could help overcome this challenge. Here, we report that S-doping of Ti3C2Tx MXene leads to a greater gas-sensing performance to VOCs compared to their undoped counterparts, with unique selectivity to toluene. After S-doped and pristine materials were synthesized, characterized, and used as electrode materials, the as-fabricated sensors were subjected to room-temperature dynamic impedimetric testing in the presence of VOCs with different functional groups (ethanol, hexane, toluene, and hexyl-acetate). Unique selectivity to toluene was obtained by both undoped and doped Ti3C2Tx MXenes, but an enhancement of response in the range of ∼214% at 1 ppm to ∼312% at 50 ppm (3-4 folds increase) was obtained for the sulfur-doped sensing material. A clear notable response to 500 ppb toluene was also obtained with sulfur-doped Ti3C2Tx MXene sensors along with excellent long-term stability. Our experimental measurements and density functional theory analysis offer insight into the mechanisms through which S-doping influences VOC analyte sensing capabilities of Ti3C2Tx MXenes, thus opening up future investigations on the development of high-performance room-temperature gas sensors.


Assuntos
Enxofre , Titânio , Eletrodos , Temperatura
6.
ACS Sens ; 5(6): 1699-1706, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32493009

RESUMO

The plant hormone ethylene (C2) can induce premature fruit ripening and flower senescence at levels below 1 ppm, which has motivated efforts to develop cost-effective methods for C2 monitoring during the transport and storage of climacteric fruits. Here, we describe a nanocomposite film composed of exfoliated MoS2, single-walled carbon nanotubes (SCNTs), and Cu(I)-tris(mercaptoimidazolyl)borate complexes (Cu-Tm) for real-time detection of C2 at levels down to 100 ppb. A copercolation network of MoS2 and SCNTs was deposited onto interdigitated Ag electrodes printed on plastic substrates and then coated with Cu-Tm with a final conductance in the 0.5 mS range. Reversible changes in relative conductance (-ΔG/G0) were measured upon C2 exposure with a linear response at sub-ppm levels. The thin-film sensors were highly selective toward C2, and they responded weakly to other volatile organic compounds or water at similar partial pressures. A mechanism is proposed in which Cu-Tm behaves as a chemically sensitive n-type dopant for MoS2, based on spectroscopic characterization and density functional theory modeling. Cu-Tm-coated MoS2/SCNT sensors were also connected to a battery-powered wireless transmitter and used to monitor C2 production from various fruit samples, validating their utility as practical, field-deployable sensors.


Assuntos
Nanotubos de Carbono , Técnicas Eletroquímicas , Etilenos , Limite de Detecção , Molibdênio
7.
J Orthop Res ; 38(3): 523-535, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608487

RESUMO

Bioresorbable iron-manganese alloys (Fe-30%Mn) are considered as one of the next-generation resorbable materials for orthopedic applications. Previous in vitro study showed that Fe30Mn scaffolds with 10% porosity displayed strong mechanical properties and adequate degradation rate without severe cytotoxicity effect. However, the cellular compatibility of these alloys in terms of cell-to-cell and alloy-to-cell interactions is not ideal. Collagen is the most abundant protein in human bone, providing structural support beneficial to bone healing. We hypothesized that coating collagen on Fe30Mn can improve osteointegration or activities promoting cell adhesion, migration, and proliferation, as the alloy degrades. After preparing collagen coating on Fe-30Mn via spin coating, we conducted a corrosion test and a direct cytotoxicity test on four Fe30Mn groups: non-porous and 10% porosity, with and without collagen coating. Furthermore, we evaluated and compared the morphologies of cells over a period of 7 days. Results showed that there was no significant difference between the collagen-coated and non-coated groups in corrosion rates, yet a significant decrease from the porous non-coated group to the porous collagen-coated group in cytotoxicity level was found. Cell morphology on the porous non-coated group displayed round shape, whereas that on the porous collagen-coated group displayed flattened spreading. The study showed that the collagen coating significantly increased the initial cell viability and adhesion for both the porous and non-porous groups without impeding their degradation rates. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:523-535, 2020.


Assuntos
Implantes Absorvíveis , Células da Medula Óssea/citologia , Materiais Revestidos Biocompatíveis/química , Colágeno/química , Ferro/química , Manganês/química , Células-Tronco/citologia , Animais , Osso e Ossos/metabolismo , Adesão Celular , Sobrevivência Celular , Corrosão , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Porosidade , Potenciometria , Desenho de Prótese , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Alicerces Teciduais
8.
Mater Sci Eng C Mater Biol Appl ; 99: 1048-1057, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889637

RESUMO

Bioresorbable metallic implants are considered to be a new generation of transient fixation devices, which provide strong mechanical support during healing as well as effective integration with the host bone tissues, free of secondary surgery. We evaluated the microstructures and mechanical properties of iron­manganese alloys (Fe30Mn) with 0-, 5-, 10-, and 60-volume percent porosity, which was produced through ammonium bicarbonate (NH4HCO3) decomposition. We also investigated the influence of porosity concentration on the corrosion rate and cytotoxicity of the alloy. The average value of maximum compressive strength was 2-fold greater in the 0-vol% scaffolds than that in 60-vol% scaffolds. Scaffolds with 60-vol% porosity exhibited the highest average value of corrosion rate in a potentiodynamic polarization test among the four groups. However, the group influenced cellular viability negatively in a subsequent cytotoxicity test. Fe30Mn scaffolds with 10-vol% NH4HCO3 are considered promising resorbable scaffolds based on the results of compression tests, corrosion experiments and cytotoxicity studies.


Assuntos
Ligas , Fenômenos Mecânicos , Ligas/efeitos adversos , Ligas/química , Ligas/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Força Compressiva , Corrosão , Módulo de Elasticidade , Humanos , Íons , Masculino , Manganês/análise , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fenômenos Ópticos , Oxirredução , Porosidade , Difração de Raios X , Adulto Jovem
9.
Adv Healthc Mater ; 6(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28449254

RESUMO

Resorbable, porous iron-manganese-hydroxyapatite biocomposites with suitable degradation rates for orthopedic applications are prepared using salt-leaching for the first time. These transient biomaterials have the potential to replace inert, permanent implants that can suffer from long-term complications, or have to be surgically removed, leaving an unfavorable void. Fe30Mn-10HA materials are newly developed to address inadequate resorption rates of degradable materials proposed for orthopedic environments in the past. In this study, controllable porosities with 300 µm diameter pores are introduced into Fe30Mn alloys and Fe30Mn-10HA composites, which enhance tissue ingrowth. For the composites, a Ca2 Mn7 O14 phase generated within the Fe30Mn matrix during the sintering process greatly increases degradability. The combination of this second phase and added porosity is found to contribute to increased bone-like apatite layer formation, mouse bone marrow mesenchymal stem cell attachment, and reduction of detrimental oxide layer flaking. Remarkably, after thirty days in vitro, there is a significant increase in degradation up to 0.82 ± 0.04 mm per year for 30 wt% porous Fe30Mn-10HA biocomposites, compared to 0.02 ± 0.00 mm per year for traditional nonporous Fe30Mn, thereby increasing the viability of these materials for future clinical studies.


Assuntos
Implantes Absorvíveis , Células da Medula Óssea/metabolismo , Durapatita , Ferro , Manganês , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Nanocompostos , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Durapatita/química , Durapatita/farmacologia , Ferro/química , Ferro/farmacologia , Manganês/química , Manganês/farmacologia , Células-Tronco Mesenquimais/citologia , Camundongos , Nanocompostos/química , Nanocompostos/uso terapêutico , Procedimentos Ortopédicos , Porosidade
10.
J Biomed Mater Res A ; 104(7): 1747-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990484

RESUMO

Nanostructured Fe-Mn and Fe-Mn-Zn metal scaffolds were generated through a well-controlled selective leaching process in order to fulfill the growing demand for adjustable degradation rates and improved cellular response of resorbable materials. Mouse bone marrow mesenchymal stem cells (D1 ORL UVA) were seeded onto eleven, carefully chosen nanoporous surfaces for 24 h in vitro. Using a combination of fluorescence microscopy, scanning electron microscopy (SEM), and an MTS assay, it was discovered that scaffolds with nanoscale roughened surfaces had increased cell attachment by up to 123% compared to polished smooth Fe-Mn surfaces. Significant cell spreading and construction of cell multilayers were also apparent after 24 h, suggesting better adhesion. Additionally, static electrochemical polarization experiments revealed an improvement of up to 26% in the actual rate of biodegradation for Fe-Mn surface-modified materials. However, any residual concentration of zinc after leaching was shown to slightly increase corrosion resistance. The results demonstrate that selectively leached, nanostructured Fe-Mn surfaces have the potential of being tailored to a diverse set of transient implant scenarios, while also effectively boosting overall biocompatibility, initial cell attachment, and degradation rate. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1747-1758, 2016.


Assuntos
Implantes Absorvíveis , Células-Tronco Mesenquimais/citologia , Metais/farmacologia , Nanoporos , Ligas/farmacologia , Animais , Osso e Ossos/citologia , Adesão Celular/efeitos dos fármacos , Contagem de Células , Corrosão , Técnicas Eletroquímicas , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanoporos/ultraestrutura , Porosidade
11.
Neurobiol Dis ; 79: 150-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931201

RESUMO

The post-mortem brains of individuals with Parkinson's disease (PD) and other synucleinopathy disorders are characterized by the presence of aggregated forms of the presynaptic protein α-synuclein (aSyn). Understanding the molecular mechanism of aSyn aggregation is essential for the development of neuroprotective strategies to treat these diseases. In this study, we examined how interactions between aSyn and phospholipid vesicles influence the protein's aggregation and toxicity to dopaminergic neurons. Two-dimensional NMR data revealed that two familial aSyn mutants, A30P and G51D, populated an exposed, membrane-bound conformer in which the central hydrophobic region was dissociated from the bilayer to a greater extent than in the case of wild-type aSyn. A30P and G51D had a greater propensity to undergo membrane-induced aggregation and elicited greater toxicity to primary dopaminergic neurons compared to the wild-type protein. In contrast, the non-familial aSyn mutant A29E exhibited a weak propensity to aggregate in the presence of phospholipid vesicles or to elicit neurotoxicity, despite adopting a relatively exposed membrane-bound conformation. Our findings suggest that the aggregation of exposed, membrane-bound aSyn conformers plays a key role in the protein's neurotoxicity in PD and other synucleinopathy disorders.


Assuntos
Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/fisiologia , Membranas Artificiais , Mesencéfalo/fisiologia , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Escherichia coli , Humanos , Mutação , Neuritos/patologia , Neuritos/fisiologia , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
12.
Neurobiol Dis ; 81: 76-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25497688

RESUMO

Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.


Assuntos
Cobre/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Neurônios Dopaminérgicos/metabolismo , Embrião de Mamíferos , Humanos , Leupeptinas/farmacologia , Mesencéfalo/citologia , Mutação/genética , Neuroblastoma/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
13.
J Biomed Mater Res A ; 103(1): 185-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24616416

RESUMO

The purpose of this study is to advance understanding of surface degradation kinetics for Fe-Mn bioresorbable alloys (specifically Fe-20%Mn) and target degradable fracture fixation implants for hard tissues. This study addresses how arc melted Fe-20%Mn discs degrade in a static, osteogenic medium for up to a 3 month time span. Degradation behavior of these bulk alloys was investigated using both mass loss tests for measuring long-term corrosion rates and potentiostatic tests for following the instantaneous rate of degradation. It was discovered that cold-rolling Fe-20%Mn to 77% cold work (CW) suppressed the instantaneous corrosion rate compared with the cast structure. It was also found that an unstable iron-rich oxide layer forms on the entire surface of these bulk samples and the act of machining the bulk metal into a defined shape may affect the morphology of the oxide layer on the outer edge of the samples during degradation. The mechanisms behind the surface evolution of these potential orthopedic implants are investigated in detail.


Assuntos
Materiais Biocompatíveis , Ferro , Manganês , Próteses e Implantes , Cinética
14.
J Biomed Mater Res A ; 103(2): 738-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24825402

RESUMO

Advancing the understanding of microstructural effects and deformation on the degradability of Fe-Mn bioresorbable alloys (specifically, Fe-33%Mn) will help address the current problems associated with designing degradable fracture fixation implants for hard tissues. Potentiostatic polarization tests were conducted on a wide variety of metal samples to examine how different deformation processes affect the instantaneous rate of degradation of Fe-Mn alloys. Large-strain machining (LSM), a novel severe plastic deformation (SPD) technique was utilized during these experiments to modify the degradation properties of the proposed Fe-Mn alloy. It was discovered that Fe-33%Mn after LSM with a rake angle of 0° (effective strain = 2.85) showed the most promising increase in degradation rate compared to as-cast, annealed, and additional deformation conditions (rolled and other LSM parameters) for the same alloy. The mechanisms for enhancement of the corrosion rate are discussed.


Assuntos
Implantes Absorvíveis , Ligas/química , Ferro/química , Manganês/química
15.
Eur Biophys J ; 40(8): 959-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21647679

RESUMO

Phenylalanine hydroxylase (PAH), a non-heme iron enzyme, is responsible for the phenylalanine conversion to tyrosine. Its malfunction causes phenylketonuria (PKU). To better understand how protein structure and folding profiles are affected by the metal cofactor, we investigated the chemical (un)folding of apo- and holo-PAH from Chromobacterium violaceum (cPAH) using circular dichroism (CD) and analytical ultracentrifugation (AUC). Holo-cPAH shows a two-state unfolding transition. In contrast, the unfolding profile for apo-cPAH reveals a three-state (un)folding pathway and accumulation of an intermediate (apo-cPAH(I)). This intermediate is also observed in refolding experiments. Fluorescence studies are consistent with the CD findings. The intermediate apo-cPAH(I) and unfolded state(s) of apo- and holo-cPAH(U) have been characterized by analytical ultracentrifugation (AUC). At 2.4 and 2.8 M GuHCl, 90% of the signal for apo-cPAH has a weight average sedimentation coefficient in water at 20°C (s20,w) of about 48 S, representing multiple aggregate species made of multiple monomers of cPAH. Aggregate formation for apo-cPAH is also confirmed by dynamic light scattering and electron microscopy giving a hydrodynamic radius (R(H)) of 41 nm for apo-cPAH(I) versus 3.5 nm for the native protein.


Assuntos
Ferro/química , Simulação de Dinâmica Molecular , Fenilalanina Hidroxilase/química , Dobramento de Proteína/efeitos dos fármacos , Naftalenossulfonato de Anilina/química , Dicroísmo Circular , Fluorescência , Guanidina/química , Ferro/fisiologia , Metaloproteases , Metais/química , Fenilalanina Hidroxilase/isolamento & purificação , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Termodinâmica , Ultracentrifugação
16.
Langmuir ; 26(24): 19199-208, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090580

RESUMO

The dispersion of Nafion ionomer particles and Pt/C catalyst aggregates in liquid media was studied using both ultra-small-angle X-ray scattering (USAXS) and cryogenic TEM. A systematic approach was taken to study first the dispersion of each component (i.e., ionomer particles and Pt/C aggregates), then the combination of the components, and last the catalyst ink. Multiple-level curve fitting was used to extract the particle size, size distribution, and geometry of the Pt/C aggregates and the Nafion particles in liquid media from the scattering data. The results suggest that the particle size, size distribution, and geometry are not uniform throughout the systems but rather vary significantly. It was found that the interaction of each component (i.e., the Nafion ionomer particles and the Pt/C aggregates) occurs in the dispersion. Cryogenic TEM was used to observe the size and geometry of the particles in liquid directly and to validate the scattering results. The TEM results showed excellent agreement.


Assuntos
Tinta , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Difração de Raios X , Carbono/química , Catálise , Polímeros de Fluorcarboneto/química , Glicerol/química , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Solventes/química , Fuligem/química
17.
Anal Chim Acta ; 661(2): 195-9, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20113735

RESUMO

Zinc oxide has been used as a matrix for immobilization of acetylcholinesterase (AChE) and detection of the pesticide paraoxon. The immobilized enzyme retained its enzymatic activity up to three months when stored in phosphate buffered saline (pH 7.4) at 4 degrees C. An amperometric biosensor for the detection of paraoxon was designed. The biosensor detected paraoxon in the range 0.035-1.38 ppm and can be used to detect other AChE inhibiting organophosphate pesticides.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Praguicidas/análise , Ressonância de Plasmônio de Superfície/métodos , Óxido de Zinco/química , Eletroquímica , Géis , Paraoxon/análise
18.
J Pharm Sci ; 99(1): 169-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19492305

RESUMO

The physical stability of amorphous molecular level solid dispersions will be influenced by the miscibility of the components. The goal of this work was to understand the effects of temperature and relative humidity on the miscibility of a model amorphous solid dispersion. Infrared spectroscopy was used to evaluate drug-polymer hydrogen bonding interactions in amorphous solid dispersions of felodipine and poly(vinyl pyrrolidone) (PVP). Samples were analyzed under stressed conditions: high temperature and high relative humidity. The glass transition temperature (T(g)) of select systems was studied using differential scanning calorimetry (DSC). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to further investigate moisture-induced changes in solid dispersions. Felodipine-PVP solid dispersions showed evidence of adhesive hydrogen bonding interactions at all compositions studied. The drug-polymer intermolecular interactions were weakened and/or less numerous on increasing the temperature, but persisted up to the melting temperature of the drug. Changes in the hydrogen bonding interactions were found to be reversible with changes in temperature. In contrast, the introduction of water into amorphous molecular level solid dispersions at room temperature irreversibly disrupted interactions between the drug and the polymer resulting in amorphous-amorphous phase separation followed by crystallization. DSC, AFM, and TEM results provided further evidence for the occurrence of moisture induced immiscibility. In conclusion, it appears that felodipine-PVP solid dispersions are susceptible to moisture-induced immiscibility when stored at a relative humidity >or=75%. In contrast, the solid dispersions remained miscible on heating.


Assuntos
Felodipino/química , Povidona/química , Temperatura , Água/química , Cristalização , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Umidade , Ligação de Hidrogênio , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA