Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 60(2): 148-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340271

RESUMO

Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.


Assuntos
Herpesviridae , Herpesvirus Humano 8 , Cricetinae , Cobaias , Humanos , Animais , Ratos , Chlorocebus aethiops , Antígenos Virais/genética , Mesocricetus , Ciclinas , Herpesvirus Humano 8/genética
2.
Cancers (Basel) ; 15(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627077

RESUMO

Deregulated protein kinases are crucial in promoting cancer cell proliferation and driving malignant cell signaling. Although these kinases are essential targets for cancer therapy due to their involvement in cell development and proliferation, only a small part of the human kinome has been targeted by drugs. A comprehensive scoring system is needed to evaluate and prioritize clinically relevant kinases. We recently developed CancerOmicsNet, an artificial intelligence model employing graph-based algorithms to predict the cancer cell response to treatment with kinase inhibitors. The performance of this approach has been evaluated in large-scale benchmarking calculations, followed by the experimental validation of selected predictions against several cancer types. To shed light on the decision-making process of CancerOmicsNet and to better understand the role of each kinase in the model, we employed a customized saliency map with adjustable channel weights. The saliency map, functioning as an explainable AI tool, allows for the analysis of input contributions to the output of a trained deep-learning model and facilitates the identification of essential kinases involved in tumor progression. The comprehensive survey of biomedical literature for essential kinases selected by CancerOmicsNet demonstrated that it could help pinpoint potential druggable targets for further investigation in diverse cancer types.

3.
BMC Cancer ; 22(1): 1211, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434556

RESUMO

BACKGROUND: Vast amounts of rapidly accumulating biological data related to cancer and a remarkable progress in the field of artificial intelligence (AI) have paved the way for precision oncology. Our recent contribution to this area of research is CancerOmicsNet, an AI-based system to predict the therapeutic effects of multitargeted kinase inhibitors across various cancers. This approach was previously demonstrated to outperform other deep learning methods, graph kernel models, molecular docking, and drug binding pocket matching. METHODS: CancerOmicsNet integrates multiple heterogeneous data by utilizing a deep graph learning model with sophisticated attention propagation mechanisms to extract highly predictive features from cancer-specific networks. The AI-based system was devised to provide more accurate and robust predictions than data-driven therapeutic discovery using gene signature reversion. RESULTS: Selected CancerOmicsNet predictions obtained for "unseen" data are positively validated against the biomedical literature and by live-cell time course inhibition assays performed against breast, pancreatic, and prostate cancer cell lines. Encouragingly, six molecules exhibited dose-dependent antiproliferative activities, with pan-CDK inhibitor JNJ-7706621 and Src inhibitor PP1 being the most potent against the pancreatic cancer cell line Panc 04.03. CONCLUSIONS: CancerOmicsNet is a promising AI-based platform to help guide the development of new approaches in precision oncology involving a variety of tumor types and therapeutics.


Assuntos
Inteligência Artificial , Neoplasias Pancreáticas , Masculino , Humanos , Simulação de Acoplamento Molecular , Medicina de Precisão , Oncologia
4.
Vaccine ; 40(42): 6093-6099, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36114130

RESUMO

Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2 respectively) cause life-long latent infections resulting in recurrent orofacial and genital blisters or sores. Ensued disease can be painful and may lead to significant mental anguish of infected individuals. Currently, there are no FDA-approved vaccines for either prophylactic or therapeutic use, and recent clinical trials of subunit vaccines failed to achieve endpoints goals. Development of a safe live-attenuated herpes simplex vaccine may provide the antigenic breadth to ultimately protect individuals from acquiring HSV disease. We have previously shown that prophylactic use of the non-neurotropic live attenuated HSV-1 vaccine, VC-2, provides potent and durable protection from genital HSV-2 disease in the guinea pig model. Here, we investigated the effects of intradermal administration as well as the deletion of the viral glycoprotein G (gG) on the efficacy of prophylactic vaccination. Vaccination with either VC-2, VC-2 gG null, or gD2 MPL/Alum offered robust protection from acute disease regardless of route of vaccination. However, both the VC-2 gG-null and the ID vaccination route were more effective compared to the parent VC2 administered by the IM route. Specifically, the VC-2 gG-null administered ID, reduced HSV-2 vaginal replication on day 2 and day 4 as well as mean recurrent lesion scores more effectively than VC2 administered IM. Most importantly, only VC-2 gG null IM and VC-2 ID significantly reduced the frequency of recurrent shedding, the most likely source for virus transmission. Similarly, while all vaccinated groups demonstrated a significant reduction in the number of animals testing PCR-positive for HSV-2 in their dorsal root ganglia following challenge only VC2 ID vaccinated animals demonstrated a significant reduction in DRG viral load. All vaccinations induced neutralizing antibodies to HSV-2 MS when compared to unvaccinated guinea pigs. Therefore, further investigation of VC-2 gG null delivered ID is warranted.


Assuntos
Herpes Genital , Vacinas contra o Vírus do Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Feminino , Glicoproteínas , Cobaias , Herpes Genital/prevenção & controle , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Vacinação , Vacinas Atenuadas , Vacinas de Subunidades Antigênicas , Proteínas do Envelope Viral/genética
5.
Front Mol Biosci ; 9: 832393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155582

RESUMO

Current approaches to cancer immunotherapy include immune checkpoint inhibitors, cancer vaccines, and adoptive cellular therapy. These therapies have produced significant clinical success for specific cancers, but their efficacy has been limited. Oncolytic virotherapy (OVT) has emerged as a promising immunotherapy for a variety of cancers. Furthermore, the unique characteristics of OVs make them a good choice for delivering tumor peptides/antigens to induce enhanced tumor-specific immune responses. The first oncolytic virus (OV) approved for human use is the attenuated herpes simplex virus type 1 (HSV-1), Talimogene laherparepvec (T-VEC) which has been FDA approved for the treatment of melanoma in humans. In this study, we engineered the recombinant oncolytic HSV-1 (oHSV) VC2-OVA expressing a fragment of ovalbumin (OVA) as a fusion protein with VP26 virion capsid protein. We tested the ability of VC2-OVA to act as a vector capable of stimulating strong, specific antitumor immunity in a syngeneic murine melanoma model. Therapeutic vaccination with VC2-OVA led to a significant reduction in colonization of tumor cells in the lungs of mice intravenously challenged B16cOVA cells. In addition, VC2-OVA induced a potent prophylactic antitumor response and extended survival of mice that were intradermally engrafted with B16cOVA tumors compared with mice immunized with control virus.

6.
Vaccine ; 36(20): 2842-2849, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29655629

RESUMO

Herpes simplex virus is a common causative agent of oral and genital diseases. Novel vaccines and therapeutics are needed to combat herpes infections especially after the failure of subunit vaccines in human clinical trials. We have shown that the live-attenuated HSV-1 VC2 vaccine strain is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. The guinea pig represents the best small animal model of genital HSV-2 disease. Reported here, twenty-one female Hartley guinea pigs received intramuscular injection with either the VC2 vaccine, or equal volume of conditioned tissue culture media. Animals received 2 booster vaccinations at 21 day intervals following the initial vaccination. After vaccination, animals were challenged with the highly virulent HSV-2 (G) strain. Histologically, VC2 vaccinated animals had little to no apparent inflammation/disease following challenge. Unvaccinated animals developed moderate to severe erosive and ulcerative vaginitis. Quantitative reverse-transcriptase PCR analysis in VC2 vaccinated and challenged animals identified transcriptional signatures of Th17 and regulatory Tr1 cells associated with the inflammatory response primed by VC2 vaccination. Treatment of cultured human vaginal epithelial cells (VK2 cells) with a combination of IL-17A and IL-22 resulted in the significant induction of beta-defensin 3 expression. Further, treatment of VK2 cells with IL-17A, IL-22, IL-36 or beta-defensin 3 resulted in diminished HSV-2 replication. Overall, these results suggest that intramuscular vaccination with the live-attenuated vaccine VC2 primes a mucosal immune response predisposing the adaptive expression of transcripts associated with a Th17 response to challenge and these responses contribute to antiviral immunity.


Assuntos
Herpes Genital/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Injeções Intramusculares , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Vagina/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica , Cobaias , Herpes Genital/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Histocitoquímica , Humanos , Esquemas de Imunização , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vagina/patologia , beta-Defensinas/análise
7.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404844

RESUMO

Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/química , Herpesvirus Equídeo 1/imunologia , Vacinas contra Herpesvirus/imunologia , Doenças dos Cavalos/prevenção & controle , Proteínas do Envelope Viral/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Equídeo 1/genética , Vacinas contra Herpesvirus/administração & dosagem , Doenças dos Cavalos/virologia , Cavalos , Imunidade Celular , Imunidade Humoral , Imunização , Injeções Intramusculares , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
8.
F1000Res ; 6: 386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408983

RESUMO

Epstein-Barr virus (EBV) is a common human herpes virus known to infect the majority of the world population. Infection with EBV is often asymptomatic but can manifest in a range of pathologies from infectious mononucleosis to severe cancers of epithelial and lymphocytic origin. Indeed, in the past decade, EBV has been linked to nearly 10% of all gastric cancers. Furthermore, recent advances in high-throughput next-generation sequencing and the development of humanized mice, which effectively model EBV pathogenesis, have led to a wealth of knowledge pertaining to strain variation and host-pathogen interaction. This review highlights some recent advances in our understanding of EBV biology, focusing on new findings on the early events of infection, the role EBV plays in gastric cancer, new strain variation, and humanized mouse models of EBV infection.

9.
Vaccine ; 35(4): 536-543, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28017425

RESUMO

We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG1 after two booster vaccinations, while IgG subtypes IgG2 and IgG3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27highCD38high) and mature memory (CD21-IgM-) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67+) follicular T helper cells and regulatory CXCR5+ CD8+ cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67+) CD4+ and CD8+ T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help define correlates of protection towards developing an efficacious HSV-1/HSV-2 vaccine in humans.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Centro Germinativo/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Linfócitos Intraepiteliais/imunologia , Animais , Diferenciação Celular , Proteção Cruzada , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Imunoglobulina G/sangue , Memória Imunológica , Injeções Intramusculares , Subpopulações de Linfócitos/imunologia , Macaca mulatta , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
10.
J Virol ; 86(5): 2882-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22205738

RESUMO

The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells.


Assuntos
Neoplasias Encefálicas/virologia , Glioblastoma/virologia , Herpesvirus Equídeo 1/fisiologia , Terapia Viral Oncolítica/instrumentação , Vírus Oncolíticos/fisiologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/terapia , Herpesvirus Equídeo 1/genética , Humanos , Vírus Oncolíticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA