Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Genes (Basel) ; 14(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895228

RESUMO

The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.


Assuntos
Proteínas de Drosophila , Histonas , Animais , Humanos , Cromatina , Proteínas de Drosophila/genética , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica
2.
Adv Sci (Weinh) ; 10(26): e2302611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400371

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.


Assuntos
Neoplasias Pulmonares , Linfangioleiomiomatose , Animais , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Engenharia Tecidual , Peixe-Zebra , Alvo Mecanístico do Complexo 1 de Rapamicina
3.
J Am Soc Nephrol ; 34(7): 1135-1149, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060140

RESUMO

The phenotypic diversity of tuberous sclerosis complex (TSC) kidney pathology is enigmatic. Despite a well-established monogenic etiology, an incomplete understanding of lesion pathogenesis persists. In this review, we explore the question: How do TSC kidney lesions arise? We appraise literature findings in the context of mutational timing and cell-of-origin. Through a developmental lens, we integrate the critical results from clinical studies, human specimens, and genetic animal models. We also review novel insights gleaned from emerging organoid and single-cell sequencing technologies. We present a new model of pathogenesis which posits a phenotypic continuum, whereby lesions arise by mutagenesis during development from variably timed second-hit events. This model can serve as a conceptual framework for testing hypotheses of TSC lesion pathogenesis, both in the kidney and in other affected tissues.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Animais , Humanos , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteína 1 do Complexo Esclerose Tuberosa/genética , Rim/patologia
4.
iScience ; 25(11): 105316, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36254158

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.

5.
Cell Rep ; 40(1): 111048, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793620

RESUMO

Tuberous sclerosis complex (TSC) is a multisystem tumor-forming disorder caused by loss of TSC1 or TSC2. Renal manifestations predominately include cysts and angiomyolipomas. Despite a well-described monogenic etiology, the cellular pathogenesis remains elusive. We report a genetically engineered human renal organoid model that recapitulates pleiotropic features of TSC kidney disease in vitro and upon orthotopic xenotransplantation. Time course single-cell RNA sequencing demonstrates that loss of TSC1 or TSC2 affects multiple developmental processes in the renal epithelial, stromal, and glial compartments. First, TSC1 or TSC2 ablation induces transitional upregulation of stromal-associated genes. Second, epithelial cells in the TSC1-/- and TSC2-/- organoids exhibit a rapamycin-insensitive epithelial-to-mesenchymal transition. Third, a melanocytic population forms exclusively in TSC1-/- and TSC2-/- organoids, branching from MITF+ Schwann cell precursors. Together, these results illustrate the pleiotropic developmental consequences of biallelic inactivation of TSC1 or TSC2 and offer insight into TSC kidney lesion pathogenesis.


Assuntos
Esclerose Tuberosa , Humanos , Rim/patologia , Organoides/patologia , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
6.
Front Cell Dev Biol ; 8: 591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733892

RESUMO

Regulation of stem cell fate is best understood at the level of gene and protein regulatory networks, though it is now clear that multiple cellular organelles also have critical impacts. A growing appreciation for the functional interconnectedness of organelles suggests that an orchestration of integrated biological networks functions to drive stem cell fate decisions and regulate metabolism. Metabolic signaling itself has emerged as an integral regulator of cell fate including the determination of identity, activation state, survival, and differentiation potential of many developmental, adult, disease, and cancer-associated stem cell populations and their progeny. As the primary adenosine triphosphate-generating organelles, mitochondria are well-known regulators of stem cell fate decisions, yet it is now becoming apparent that additional organelles such as the lysosome are important players in mediating these dynamic decisions. In this review, we will focus on the emerging role of organelles, in particular lysosomes, in the reprogramming of both metabolic networks and stem cell fate decisions, especially those that impact the determination of cell identity. We will discuss the inter-organelle interactions, cell signaling pathways, and transcriptional regulatory mechanisms with which lysosomes engage and how these activities impact metabolic signaling. We will further review recent data that position lysosomes as critical regulators of cell identity determination programs and discuss the known or putative biological mechanisms. Finally, we will briefly highlight the potential impact of elucidating mechanisms by which lysosomes regulate stem cell identity on our understanding of disease pathogenesis, as well as the development of refined regenerative medicine, biomarker, and therapeutic strategies.

7.
Cell Rep ; 32(2): 107896, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668242

RESUMO

Protein Lys methylation plays a critical role in numerous cellular processes, but it is challenging to identify Lys methylation in a systematic manner. Here we present an approach combining in silico prediction with targeted mass spectrometry (MS) to identify Lys methylation (Kme) sites at the proteome level. We develop MethylSight, a program that predicts Kme events solely on the physicochemical properties of residues surrounding the putative methylation sites, which then requires validation by targeted MS. Using this approach, we identify 70 new histone Kme marks with a 90% validation rate. H2BK43me2, which undergoes dynamic changes during stem cell differentiation, is found to be a substrate of KDM5b. Furthermore, MethylSight predicts that Lys methylation is a prevalent post-translational modification in the human proteome. Our work provides a useful resource for guiding systematic exploration of the role of Lys methylation in human health and disease.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteoma/metabolismo , Algoritmos , Sequência de Aminoácidos , Animais , Diferenciação Celular , Desmetilação , Feminino , Histonas/química , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Metilação , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/citologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Software , Especificidade por Substrato
8.
Sci Rep ; 10(1): 6827, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321940

RESUMO

The placenta forms a maternal-fetal junction that supports many physiological functions such as the supply of nutrition and exchange of gases and wastes. Establishing an in vitro culture model of human and non-human primate trophoblast stem/progenitor cells is important for investigating the process of early placental development and trophoblast differentiation. In this study, we have established five trophoblast stem cell (TSC) lines from cynomolgus monkey blastocysts, named macTSC #1-5. Fibroblast growth factor 4 (FGF4) enhanced proliferation of macTSCs, while other exogenous factors were not required to maintain their undifferentiated state. macTSCs showed a trophoblastic gene expression profile and trophoblast-like DNA methylation status and also exhibited differentiation capacity towards invasive trophoblast cells and multinucleated syncytia. In a xenogeneic chimera assay, these stem cells contributed to trophectoderm (TE) development in the chimeric blastocysts. macTSC are the first primate trophoblast cell lines whose proliferation is promoted by FGF4. These cell lines provide a valuable in vitro culture model to analyze the similarities and differences in placental development between human and non-human primates.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco/citologia , Trofoblastos/citologia , Animais , Bucladesina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimera , Cromossomos de Mamíferos/genética , Metilação de DNA/genética , Ectoderma/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Gigantes/citologia , Macaca fascicularis , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade da Espécie , Células-Tronco/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
9.
Stem Cell Reports ; 13(6): 1111-1125, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31813826

RESUMO

Human pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation, while fine-tuning of BA conditions facilitated definitive endoderm commitment. After prolonged differentiation in vitro or in vivo, BA pretreatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be adapted for use in mesoderm and endoderm differentiation.


Assuntos
Diferenciação Celular/genética , Mesoderma/citologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica , Ativinas/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Endoderma/citologia , Endoderma/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos , Análise de Célula Única , Teratoma/etiologia , Fatores de Tempo , Transcriptoma
10.
Virology ; 538: 24-34, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31561058

RESUMO

Human adenovirus (HAdV) can cause severe disease and death in both immunocompromised and immunocompetent patients. The current standards of treatment are often ineffective, and no approved antiviral therapy against HAdV exists. We report here the design and validation of a fluorescence-based high-content screening platform for the identification of novel anti-HAdV compounds. The screen was conducted using a wildtype-like virus containing the red fluorescent protein (RFP) gene under the regulation of the HAdV major late promoter. Thus, RFP expression allows monitoring of viral late gene expression (a surrogate marker for virus replication), and compounds affecting virus growth can be easily discovered by quantifying RFP intensity. We used our platform to screen ~1200 FDA-approved small molecules, and identified several cardiotonic steroids, corticosteroids and chemotherapeutic agents as anti-HAdV compounds. Our screening platform provides the stringency necessary to detect compounds with varying degrees of antiviral activity, and facilitates drug discovery/repurposing to combat HAdV infections.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteína Vermelha Fluorescente
11.
Mol Ther ; 27(5): 912-921, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30819613

RESUMO

Efficient delivery of gene therapy vectors across the blood-brain barrier (BBB) is the holy grail of neurological disease therapies. A variant of the neurotropic vector adeno-associated virus (AAV) serotype 9, called AAV-PHP.B, was shown to very efficiently deliver transgenes across the BBB in C57BL/6J mice. Based on our recent observation that this phenotype is mouse strain dependent, we used whole-exome sequencing-based genetics to map this phenotype to a specific haplotype of lymphocyte antigen 6 complex, locus A (Ly6a) (stem cell antigen-1 [Sca-1]), which encodes a glycosylphosphatidylinositol (GPI)-anchored protein whose function had been thought to be limited to the biology of hematopoiesis. Additional biochemical and genetic studies definitively linked high BBB transport to the binding of AAV-PHP.B with LY6A (SCA-1). These studies identify, for the first time, a ligand for this GPI-anchored protein and suggest a role for it in BBB transport that could be hijacked by viruses in natural infections or by gene therapy vectors to treat neurological diseases.


Assuntos
Antígenos Ly/genética , Barreira Hematoencefálica/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Proteínas de Membrana/genética , Animais , Antígenos Ly/farmacologia , Transporte Biológico/genética , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Glicosilfosfatidilinositóis/genética , Hematopoese/genética , Humanos , Proteínas de Membrana/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sequenciamento do Exoma
12.
Adv Mater ; 31(7): e1806214, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30589121

RESUMO

Cell behavior is highly dependent upon microenvironment. Thus, to identify drugs targeting metastatic cancer, screens need to be performed in tissue mimetic substrates that allow cell invasion and matrix remodeling. A novel biomimetic 3D hydrogel platform that enables quantitative analysis of cell invasion and viability at the individual cell level is developed using automated data acquisition methods with an invasive lung disease (lymphangioleiomyomatosis, LAM) characterized by hyperactive mammalian target of rapamycin complex 1 (mTORC1) signaling as a model. To test the lung-mimetic hydrogel platform, a kinase inhibitor screen is performed using tuberous sclerosis complex 2 (TSC2) hypomorphic cells, identifying Cdk2 inhibition as a putative LAM therapeutic. The 3D hydrogels mimic the native niche, enable multiple modes of invasion, and delineate phenotypic differences between healthy and diseased cells, all of which are critical to effective drug screens of highly invasive diseases including lung cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Hidrogéis , Neoplasias Pulmonares/tratamento farmacológico , Modelos Biológicos , Animais , Antineoplásicos/farmacologia , Automação Laboratorial , Materiais Biomiméticos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Teste de Materiais , Fosfotransferases/antagonistas & inibidores , Ratos , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
13.
Cancer Discov ; 8(11): 1376-1389, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115703

RESUMO

Deep sequencing has revealed that epigenetic modifiers are the most mutated genes in acute myeloid leukemia (AML). Thus, elucidating epigenetic dysregulation in AML is crucial to understand disease mechanisms. Here, we demonstrate that metal response element binding transcription factor 2/polycomblike 2 (MTF2/PCL2) plays a fundamental role in the polycomb repressive complex 2 (PRC2) and that its loss elicits an altered epigenetic state underlying refractory AML. Unbiased systems analyses identified the loss of MTF2-PRC2 repression of MDM2 as central to, and therefore a biomarker for, refractory AML. Thus, immature MTF2-deficient CD34+CD38- cells overexpress MDM2, thereby inhibiting p53 that leads to chemoresistance due to defects in cell-cycle regulation and apoptosis. Targeting this dysregulated signaling pathway by MTF2 overexpression or MDM2 inhibitors sensitized refractory patient leukemic cells to induction chemotherapeutics and prevented relapse in AML patient-derived xenograft mice. Therefore, we have uncovered a direct epigenetic mechanism by which MTF2 functions as a tumor suppressor required for AML chemotherapeutic sensitivity and identified a potential therapeutic strategy to treat refractory AML.Significance: MTF2 deficiency predicts refractory AML at diagnosis. MTF2 represses MDM2 in hematopoietic cells and its loss in AML results in chemoresistance. Inhibiting p53 degradation by overexpressing MTF2 in vitro or by using MDM2 inhibitors in vivo sensitizes MTF2-deficient refractory AML cells to a standard induction-chemotherapy regimen. Cancer Discov; 8(11); 1376-89. ©2018 AACR. See related commentary by Duy and Melnick, p. 1348 This article is highlighted in the In This Issue feature, p. 1333.


Assuntos
Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Complexo Repressor Polycomb 2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Stem Cells Dev ; 27(16): 1085-1096, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29893190

RESUMO

While transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) shows therapeutic potential in animal stroke models, major concerns for translating hiPSC therapy to the clinic are efficacy and safety. Therefore, there is a demand to develop an optimal strategy to enhance the engraftment and regenerative capacity of transplanted hiPSC-NSCs to produce fully differentiated neural cells to replace lost brain tissues. Metformin, an FDA-approved drug, is an optimal neuroregenerative agent that not only promotes NSC proliferation but also drives NSCs toward differentiation. In this regard, we hypothesize that preconditioning of hiPSC-NSCs with metformin before transplantation into the stroke-damaged brain will improve engraftment and regenerative capabilities of hiPSC-NSCs, ultimately enhancing functional recovery. In this study, we show that pretreatment of hiPSC-NSCs with metformin enhances the proliferation and differentiation of hiPSC-NSCs in culture. Furthermore, metformin-preconditioned hiPSC-NSCs show increased engraftment 1 week post-transplantation in a rat endothelin-1 focal ischemic stroke model. In addition, metformin-preconditioned cell grafts exhibit increased survival compared to naive cell grafts at 7 weeks post-transplantation. Analysis of the grafts demonstrates that metformin preconditioning enhances the differentiation of hiPSC-NSCs at the expense of their proliferation. As an outcome, rats receiving metformin-preconditioned cells display accelerated gross motor recovery and reduced infarct volume. These studies represent a vital step forward in the optimization of hiPSC-NSC-based transplantation to promote post-stroke recovery.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Metformina/administração & dosagem , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/patologia , Reabilitação do Acidente Vascular Cerebral
16.
Cell Discov ; 4: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736258

RESUMO

Polycomb repressive complex 2 (PRC2) accessory proteins play substoichiometric, tissue-specific roles to recruit PRC2 to specific genomic loci or increase enzymatic activity, while PRC2 core proteins are required for complex stability and global levels of trimethylation of histone 3 at lysine 27 (H3K27me3). Here, we demonstrate a role for the classical PRC2 accessory protein Mtf2/Pcl2 in the hematopoietic system that is more akin to that of a core PRC2 protein. Mtf2-/- erythroid progenitors demonstrate markedly decreased core PRC2 protein levels and a global loss of H3K27me3 at promoter-proximal regions. The resulting de-repression of transcriptional and signaling networks blocks definitive erythroid development, culminating in Mtf2-/- embryos dying by e15.5 due to severe anemia. Gene regulatory network (GRN) analysis demonstrated Mtf2 directly regulates Wnt signaling in erythroblasts, leading to activated canonical Wnt signaling in Mtf2-deficient erythroblasts, while chemical inhibition of canonical Wnt signaling rescued Mtf2-deficient erythroblast differentiation in vitro. Using a combination of in vitro, in vivo and systems analyses, we demonstrate that Mtf2 is a critical epigenetic regulator of Wnt signaling during erythropoiesis and recast the role of polycomb accessory proteins in a tissue-specific context.

17.
Theranostics ; 8(7): 1766-1781, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556355

RESUMO

Background: To improve the regenerative capacity of aged individuals, we reconstituted bone marrow (BM) of aged mice with young Sca-1 cells, which repopulated cardiac progenitors and prevented cardiac dysfunction after a myocardial infarction (MI). However, the mechanisms involved were incompletely elucidated. This study aimed to investigate whether young, highly regenerative BM Sca-1 cells exert their cardio-protective effects on the aged heart through reactivation of the epithelial-to-mesenchymal transition (EMT) process. Methods:In vitro, BM Sca-1 cells were co-cultured with epicardial-derived cells (EPDCs) under hypoxia condition; mRNA and protein levels of EMT genes were measured along with cellular proliferation and migration. In vivo, BM Sca-1+ or Sca-1- cells from young mice (2-3 months) were transplanted into lethally-irradiated old mice (20-22 months) to generate chimeras. In addition, Sca-1 knockout (KO) mice were reconstituted with wild type (WT) BM Sca-1+ cells. The effects of BM Sca-1 cell on EMT reactivation and improvement of cardiac function after MI were evaluated. Results:In vitro, BM Sca-1+ cells increased EPDC proliferation, migration, and EMT relative to Sca-1- cells and these effects were inhibited by a TGF-ß blocker. In vivo, more young BM Sca-1+ than Sca-1- cells homed to the epicardium and induced greater host EPDC proliferation, migration, and EMT after MI. Furthermore, reconstitution of Sca-1 KO mice with WT Sca-1+ cells was associated with the reactivation of EMT and improved cardiac function after MI. Conclusions: Young BM Sca-1+ cells improved cardiac regeneration through promoting EPDC proliferation, migration and reactivation of EMT via the TGF-ß signaling pathway.


Assuntos
Ataxina-1/análise , Transdiferenciação Celular , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Células-Tronco Hematopoéticas/fisiologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/química , Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/química , Camundongos , Camundongos Knockout , Infarto do Miocárdio/terapia , Proteoma/análise , RNA Mensageiro/análise , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento
18.
Cartilage ; 9(4): 417-427, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28357919

RESUMO

OBJECTIVE: Inorganic polyphosphates (polyP) play a multitude of roles in mammalian biology. PolyP research is hindered by the lack of a simple and sensitive quantification method. The aim of this study was to develop a robust method for quantifying the low levels of polyP in mammalian tissue such as cartilage, which is rich in macromolecules that interfere with its determination. DESIGN: Native and in vitro formed tissues were digested with proteinase K to release sequestrated polyP. The tissue digest was loaded on to silica spin columns, followed by elution of bound polyP and various treatments were assessed to minimize non-polyP fluorescence. The eluent was then quantified for polyP content using fluorometry based on DAPI (4',6-diamidino-2-phenylindole) fluorescence shift occurring with polyP. RESULTS: Proteinase K pretreatment reduced the inhibitory effect of proteins on polyP recovery. The eluent was contaminated with nucleic acids and glycosaminoglycans, which cause extraneous fluorescence signals. These were then effectively eliminated by nucleases treatment and addition of concentrated Tris buffer. PolyP levels were quantified and recovery ratio determined using samples spiked with a known amount of polyP. This silica spin column method was able to recover at least 80% of initially loaded polyP, and detect as little as 10-10 mol. CONCLUSIONS: This sensitive, reproducible, easy to do method of quantifying polyP will be a useful tool for investigation of polyP biology in mammalian cells and tissues. Although the protocol was developed for mammalian tissues, this method should be able to quantify polyP in most biological sources, including fluid samples such as blood and serum.


Assuntos
Cartilagem/química , Técnicas de Química Analítica/métodos , Fluorometria/métodos , Fosfatos/análise , Polifosfatos/análise , Animais , Fluorescência , Humanos , Mamíferos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Dióxido de Silício
19.
Cytotherapy ; 20(1): 108-125, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29056548

RESUMO

BACKGROUND AIMS: Bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted lung growth, is the most common complication in extreme premature infants. BPD leads to persistent pulmonary disease later in life. Alveolar epithelial type 2 cells (AEC2s), a subset of which represent distal lung progenitor cells (LPCs), promote normal lung growth and repair. AEC2 depletion may contribute to persistent lung injury in BPD. We hypothesized that induced pluripotent stem cell (iPSC)-derived AECs prevent lung damage in experimental oxygen-induced BPD. METHODS: Mouse AECs (mAECs), miPSCs/mouse embryonic stem sells, human umbilical cord mesenchymal stromal cells (hUCMSCs), human (h)iPSCs, hiPSC-derived LPCs and hiPSC-derived AECs were delivered intratracheally to hyperoxia-exposed newborn mice. Cells were pre-labeled with a red fluorescent dye for in vivo tracking. RESULTS: Airway delivery of primary mAECs and undifferentiated murine pluripotent cells prevented hyperoxia-induced impairment in lung function and alveolar growth in neonatal mice. Similar to hUCMSC therapy, undifferentiated hiPSCs also preserved lung function and alveolar growth in hyperoxia-exposed neonatal NOD/SCID mice. Long-term assessment of hiPSC administration revealed local teratoma formation and cellular infiltration in various organs. To develop a clinically relevant cell therapy, we used a highly efficient method to differentiate hiPSCs into a homogenous population of AEC2s. Airway delivery of hiPSC-derived AEC2s and hiPSC-derived LPCs, improved lung function and structure and resulted in long-term engraftment without evidence of tumor formation. CONCLUSIONS: hiPSC-derived AEC2 therapy appears effective and safe in this model and warrants further exploration as a therapeutic option for BPD and other lung diseases characterized by AEC injury.


Assuntos
Células Epiteliais Alveolares/citologia , Hiperóxia/complicações , Células-Tronco Pluripotentes Induzidas/citologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oxigênio , Teratoma/patologia
20.
Mol Ther Methods Clin Dev ; 9: 12-22, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29255742

RESUMO

The tumor suppressor PTEN is frequently inactivated in glioblastoma. PTEN-L is a long form of PTEN produced by translation from an alternate upstream start codon. Unlike PTEN, PTEN-L has a signal sequence and a tract of six arginine residues that allow PTEN-L to be secreted from cells and be taken up by neighboring cells. This suggests that PTEN-L could be used as a therapeutic to restore PTEN activity. However, effective delivery of therapeutic proteins to treat CNS cancers such as glioblastoma is challenging. One method under evaluation is cell-mediated therapy, where cells with tumor-homing abilities such as neural stem cells are genetically modified to express a therapeutic protein. Here, we have developed a version of PTEN-L that is engineered for enhanced cell-mediated delivery. This was accomplished by replacement of the native leader sequence of PTEN-L with a leader sequence from human light-chain immunoglobulin G (IgG). This version of PTEN-L showed increased secretion and an increased ability to transfer to neighboring cells. Neural stem cells derived from human fibroblasts could be modified to express this version of PTEN-L and were able to deliver catalytically active light-chain leader PTEN-L (lclPTEN-L) to neighboring glioblastoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA