RESUMO
OBJECTIVE: To investigate the involvement of transient receptor potential ankyrin 1 (TRPA1) in inflammatory hyperalgesia mediated by tumor necrosis factor α(TNFα) and joint inflammation. METHODS: Mechanical hyperalgesia was assessed in CD1 mice, mice lacking functional TRP vanilloid 1 (TRPV1-/-) or TRPA1 (TRPA1-/-), or respective wildtype (WT) mice. An automated von Frey system was used, following unilateral intraplantar injection of TNFα or intraarticular injection of Freund's complete adjuvant (CFA). Knee swelling and histologic changes were determined in mice treated with intraarticular injections of CFA. RESULTS: TNFα induced cyclooxygenase-independent bilateral mechanical hyperalgesia in CD1 mice. The selective TRPV1 receptor antagonist SB-366791 had no effect on mechanical hyperalgesia when it was coinjected with TNFα, but intrathecally administered SB- 366791 attenuated bilateral hyperalgesia, indicating the central but not peripheral involvement of TRPV1 receptors. A decrease in pain sensitivity was also observed in TRPV1-/- mice. Intraplantar coadministration of the TRPA1 receptor antagonist AP-18 with TNFα inhibited bilateral hyperalgesia. Intrathecal treatment with AP-18 also reduced TNFα-induced hyperalgesia. CFA-induced mechanical hyperalgesia in CD1 mice was attenuated by AP-18 (administered by intraarticular injection 22 hours after the administration of CFA). Furthermore, intraarticular CFAinduced ipsilateral mechanical hyperalgesia was maintained for 3 weeks in TRPA1 WT mice. In contrast, TRPA1-/- mice exhibited mechanical hyperalgesia for only 24 hours after receiving CFA. CONCLUSION: Evidence suggests that endogenous activation of peripheral TRPA1 receptors plays a critical role in the development of TNFα-induced mechanical hyperalgesia and in sustaining the mechanical hyperalgesia observed after intraaarticular injection of CFA. These results suggest that blockade of TRPA1 receptors may be beneficial in reducing the chronic pain associated with arthritis.
Assuntos
Artrite Experimental/imunologia , Hiperalgesia/imunologia , Canais de Cátion TRPV/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adjuvantes Imunológicos/farmacologia , Anilidas/farmacologia , Animais , Artralgia/induzido quimicamente , Artralgia/imunologia , Artrite Experimental/induzido quimicamente , Cinamatos/farmacologia , Modelos Animais de Doenças , Feminino , Adjuvante de Freund/farmacologia , Hiperalgesia/induzido quimicamente , Injeções Intra-Articulares , Injeções Espinhais , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1 , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
The cytokine interleukin-1beta (IL-1beta) released by spinal microglia in enhanced response states contributes significantly to neuronal mechanisms of chronic pain. Here we examine the involvement of the purinergic P2X7 receptor in the release of IL-1beta following activation of Toll-like receptor-4 (TLR4) in the dorsal horn, which is associated with nociceptive behavior and microglial activation. We observed that lipopolysaccharide (LPS)-induced release of IL-1beta was prevented by pharmacological inhibition of the P2X7 receptor with A-438079, and was absent in spinal cord slices taken from P2X7 knock-out mice. Application of ATP did not evoke release of IL-1beta from the dorsal horn unless preceded by an LPS priming stimulus, and this release was dependent on P2X7 receptor activation. Extensive phosphorylation of p38 MAPK in microglial cells in the dorsal horn was found to correlate with IL-1beta secretion following both LPS and ATP. In behavioral studies, intrathecal injection of LPS in the lumbar spinal cord produced mechanical hyperalgesia in rat hindpaws, which was attenuated by concomitant injections of either a nonspecific (oxidized ATP) or a specific (A-438079) P2X7 antagonist. In addition, LPS-induced hypersensitivity was observed in wild-type but not P2X7 knock-out mice. These data suggest a critical role for the P2X7 receptor in the enhanced nociceptive transmission associated with microglial activation and secretion of IL-1beta in the dorsal horn. We suggest that CNS-penetrant P2X7 receptor antagonists, by targeting microglia in pain-enhanced response states, may be beneficial for the treatment of persistent pain.
Assuntos
Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Receptores Purinérgicos P2/metabolismo , Medula Espinal/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/induzido quimicamente , Técnicas In Vitro , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Agonistas do Receptor Purinérgico P2 , Antagonistas do Receptor Purinérgico P2 , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2X7 , Medula Espinal/anatomia & histologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Tetrazóis/farmacologia , Teofilina/análogos & derivados , Teofilina/farmacologia , Fatores de TempoRESUMO
A recent major conceptual advance has been the recognition of the importance of immune system-neuronal interactions in the modulation of brain function, one example of which is spinal pain processing in neuropathic states. Here, we report that in peripheral nerve-injured rats, the lysosomal cysteine protease cathepsin S (CatS) is critical for the maintenance of neuropathic pain and spinal microglia activation. After injury, CatS was exclusively expressed by activated microglia in the ipsilateral dorsal horn, where expression peaked at day 7, remaining high on day 14. Intrathecal delivery of an irreversible CatS inhibitor, morpholinurea-leucine-homophenylalanine-vinyl phenyl sulfone (LHVS), was antihyperalgesic and antiallodynic in neuropathic rats and attenuated spinal microglia activation. Consistent with a pronociceptive role of endogenous CatS, spinal intrathecal delivery of rat recombinant CatS (rrCatS) induced hyperalgesia and allodynia in naïve rats and activated p38 mitogen-activated protein kinase (MAPK) in spinal cord microglia. A bioinformatics approach revealed that the transmembrane chemokine fractalkine (FKN) is a potential substrate for CatS cleavage. We show that rrCatS incubation reduced the levels of cell-associated FKN in cultured sensory neurons and that a neutralizing antibody against FKN prevented both FKN- and CatS-induced allodynia, hyperalgesia, and p38 MAPK activation. Furthermore, rrCatS induced allodynia in wild-type but not CX3CR1-knockout mice. We suggest that under conditions of increased nociception, microglial CatS is responsible for the liberation of neuronal FKN, which stimulates p38 MAPK phosphorylation in microglia, thereby activating neurons via the release of pronociceptive mediators.