Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 45(4): 465-480.e11, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29754803

RESUMO

Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Eletricidade Estática , Arabidopsis/crescimento & desenvolvimento , Organelas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
2.
BMC Biol ; 16(1): 20, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415713

RESUMO

BACKGROUND: In plants, the shoot apical meristem (SAM) has two main functions, involving the production of all aerial organs on the one hand and self-maintenance on the other, allowing the production of organs during the entire post-embryonic life of the plant. Transcription factors, microRNA, hormones, peptides and forces have been involved in meristem function. Whereas phosphatidylinositol phosphates (PIPs) have been involved in almost all biological functions, including stem cell maintenance and organogenesis in animals, the processes in meristem biology to which PIPs contribute still need to be delineated. RESULTS: Using biosensors for PI4P and PI(4,5)P2, the two most abundant PIPs at the plasma membrane, we reveal that meristem functions are associated with a stereotypical PIP tissue-scale pattern, with PI(4,5)P2 always displaying a more clear-cut pattern than PI4P. Using clavata3 and pin-formed1 mutants, we show that stem cell maintenance is associated with reduced levels of PIPs. In contrast, high PIP levels are signatures for organ-meristem boundaries. Interestingly, this pattern echoes that of cortical microtubules and stress anisotropy at the meristem. Using ablations and pharmacological approaches, we further show that PIP levels can be increased when the tensile stress pattern is altered. Conversely, we find that katanin mutant meristems, with increased isotropy of microtubule arrays and slower response to mechanical perturbations, exhibit reduced PIP gradients within the SAM. Comparable PIP pattern defects were observed in phospholipase A3ß overexpressor lines, which largely phenocopy katanin mutants at the whole plant level. CONCLUSIONS: Using phospholipid biosensors, we identified a stereotypical PIP accumulation pattern in the SAM that negatively correlates with stem cell maintenance and positively correlates with organ-boundary establishment. While other cues are very likely to contribute to the final PIP pattern, we provide evidence that the patterns of PIP, cortical microtubules and mechanical stress are positively correlated, suggesting that the PIP pattern, and its reproducibility, relies at least in part on the mechanical status of the SAM.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Meristema/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Técnicas Biossensoriais/métodos , Meristema/química , Meristema/genética , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/genética , Caules de Planta/química , Caules de Planta/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética
3.
Nat Plants ; 2: 16089, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27322096

RESUMO

Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.


Assuntos
Arabidopsis/fisiologia , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Fenômenos Biofísicos , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 152(4): 2173-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181756

RESUMO

In this article, we analyzed the lipid composition of detergent-insoluble membranes (DIMs) purified from tobacco (Nicotiana tabacum) plasma membrane (PM), focusing on polyphosphoinositides, lipids known to be involved in various signal transduction events. Polyphosphoinositides were enriched in DIMs compared with whole PM, whereas all structural phospholipids were largely depleted from this fraction. Fatty acid composition analyses suggest that enrichment of polyphosphoinositides in DIMs is accompanied by their association with more saturated fatty acids. Using an immunogold-electron microscopy strategy, we were able to visualize domains of phosphatidylinositol 4,5-bisphosphate in the plane of the PM, with 60% of the epitope found in clusters of approximately 25 nm in diameter and 40% randomly distributed at the surface of the PM. Interestingly, the phosphatidylinositol 4,5-bisphosphate cluster formation was not significantly sensitive to sterol depletion induced by methyl-beta-cyclodextrin. Finally, we measured the activities of various enzymes of polyphosphoinositide metabolism in DIMs and PM and showed that these activities are present in the DIM fraction but not enriched. The putative role of plant membrane rafts as signaling membrane domains or membrane-docking platforms is discussed.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Plantas/metabolismo , Membrana Celular/metabolismo
5.
Mol Cell Proteomics ; 8(9): 2186-98, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19525550

RESUMO

A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.


Assuntos
Proteínas de Algas/farmacologia , Membrana Celular/metabolismo , Detergentes/farmacologia , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proteínas Fúngicas , Medições Luminescentes , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Proteínas de Plantas/química , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Coloração e Rotulagem , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA