Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(7): e0067924, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842335

RESUMO

In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein ß-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Proteínas do Envelope Viral , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Camundongos , Febre de Chikungunya/virologia , Humanos , Internalização do Vírus , Conformação Proteica , Receptores Virais/metabolismo , Receptores Virais/genética , Mutação , Linhagem Celular , Ligação Proteica , Simulação de Dinâmica Molecular
2.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293111

RESUMO

Alphaviruses encode an error-prone RNA-dependent RNA polymerase (RdRp), nsP4, required for genome synthesis, yet how the RdRp functions in the complete alphavirus life cycle is not well-defined. Previous work using chikungunya virus (CHIKV) has established the importance of the nsP4 residue cysteine 483 in maintaining viral genetic fidelity. Given the location of residue C483 in the nsP4 palm domain, we hypothesized that other residues within this domain and surrounding subdomains would also contribute to polymerase function. To test this hypothesis, we designed a panel of nsP4 variants via homology modeling based on the Coxsackievirus B3 3 polymerase. We rescued each variant in both mammalian and mosquito cells and discovered that the palm domain and ring finger subdomain contribute to polymerase host-specific replication and genetic stability. Surprisingly, in mosquito cells, these variants in the ring finger and palm domain were replication competent and produced viral structural proteins, but they were unable to produce infectious progeny, indicating a yet uncharacterized role for the polymerase in viral assembly. Finally, we have identified additional residues in the nsP4 palm domain that influence the genetic diversity of the viral progeny, potentially via an alteration in NTP binding and/or discrimination by the polymerase. Taken together, these studies highlight that distinct nsP4 subdomains regulate multiple processes of the alphavirus life cycle, placing nsP4 in a central role during the switch from RNA synthesis to packaging and assembly.

3.
J Virol ; 96(4): e0158621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935436

RESUMO

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Assuntos
Vírus Chikungunya/fisiologia , Vírus Chikungunya/patogenicidade , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Aedes/virologia , Animais , Anticorpos Monoclonais/imunologia , Febre de Chikungunya/patologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Modelos Animais de Doenças , Heparina/metabolismo , Humanos , Inflamação , Camundongos , Mutação , Testes de Neutralização , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Replicação Viral
4.
J Virol ; 96(2): e0177421, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757841

RESUMO

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in ß-strand c (V114M) of domain II. We have previously shown that the analogous ß-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E ß-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo.IMPORTANCE Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.


Assuntos
Alphavirus/fisiologia , Flavivirus/fisiologia , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Replicação Viral , Células A549 , Alphavirus/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Animais , Culicidae/virologia , Flavivirus/efeitos dos fármacos , Humanos , Interferon Tipo I/deficiência , Camundongos , Camundongos Mutantes , Mutação , Domínios Proteicos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vírion/genética , Montagem de Vírus/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/genética , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/virologia
5.
Front Immunol ; 12: 719077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394127

RESUMO

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is a major global public threat. Currently, a worldwide effort has been mounted to generate billions of effective SARS-CoV-2 vaccine doses to immunize the world's population at record speeds. However, there is still a demand for alternative effective vaccines that rapidly confer long-term protection and rely upon cost-effective, easily scaled-up manufacturing. Here, we present a Sindbis alphavirus vector (SV), transiently expressing the SARS-CoV-2 spike protein (SV.Spike), combined with the OX40 immunostimulatory antibody (αOX40) as a novel, highly effective vaccine approach. We show that SV.Spike plus αOX40 elicits long-lasting neutralizing antibodies and a vigorous T-cell response in mice. Protein binding, immunohistochemical, and cellular infection assays all show that vaccinated mice sera inhibits spike functions. Immunophenotyping, RNA Seq transcriptome profiles, and metabolic analysis indicate a reprogramming of T cells in vaccinated mice. Activated T cells were found to mobilize to lung tissue. Most importantly, SV.Spike plus αOX40 provided robust immune protection against infection with authentic coronavirus in transgenic mice expressing the human ACE2 receptor (hACE2-Tg). Finally, our immunization strategy induced strong effector memory response, potentiating protective immunity against re-exposure to SARS-CoV-2 spike protein. Our results show the potential of a new Sindbis virus-based vaccine platform to counteract waning immune response, which can be used as a new candidate to combat SARS-CoV-2. Given the T-cell responses elicited, our vaccine is likely to be effective against variants that are proving challenging, as well as serve as a platform to develop a broader spectrum pancoronavirus vaccine. Similarly, the vaccine approach is likely to be applicable to other pathogens.


Assuntos
Antígenos de Diferenciação/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Sindbis virus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Cricetinae , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sindbis virus/genética , Linfócitos T/imunologia , Vacinação
6.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168039

RESUMO

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Assuntos
Coronavirus Humano OC43/fisiologia , Processamento Pós-Transcricional do RNA/genética , SARS-CoV-2/fisiologia , Replicação Viral/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Proteínas do Nucleocapsídeo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/efeitos dos fármacos
7.
medRxiv ; 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34100025

RESUMO

Patients with hematologic malignancies are a high priority for SARS-CoV-2 vaccination, yet the benefit they will derive is uncertain. We investigated the humoral response to vaccination in 53 non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), or CLL patients. Peripheral blood was obtained 2 weeks after first vaccination and 6 weeks after second vaccination for antibody profiling using the multiplex bead-binding assay. Serum IgG, IgA, and IgM antibody levels to the spike specific receptor binding domain (RBD) were evaluated as a measure of response. Subsequently, antibody-positive serum were assayed for neutralization capacity against authentic SARS-CoV-2. Histology was 68% lymphoma and 32% CLL; groups were: patients receiving anti-CD20-based therapy (45%), monitored with disease (28%), receiving BTK inhibitors (19%), or chemotherapy (all HL) (8%). SARS-CoV-2 specific RBD IgG antibody response was decreased across all NHL and CLL groups: 25%, 73%, and 40%, respectively. Antibody IgG titers were significantly reduced (p < 0.001) for CD20 treated and targeted therapy patients, and (p = 0.003) for monitored patients. In 94% of patients evaluated after first and second vaccination, antibody titers did not significantly boost after second vaccination. Only 13% of CD20 treated and 13% of monitored patients generated neutralizing antibodies to SARS-CoV-2 with ICD50s 135 to 1767, and 445 and > 10240. This data has profound implications given the current guidance relaxing masking restrictions and for timing of vaccinations. Unless immunity is confirmed with laboratory testing, these patients should continue to mask, socially distance, and to avoid close contact with non-vaccinated individuals. STATEMENT OF TRANSLATIONAL RELEVANCE: Non Hodgkin lymphoma (NHL) and Chronic Lymphocytic leukemia (CLL) patients who are treated with anti-CD20 antibody therapy, BTK inhibitor therapy, or who are monitored with active disease, have decreased antibody response to SARS-CoV-2 vaccination and decreased antibody titers compared to healthy controls. Antibody titers do not boost following second vaccination, and very few patients generate neutralizing antibodies against SARS-CoV-2. This data is of particular importance, given the recent guidance from the CDC that vaccinated patients no longer need to be masked indoors as well as outdoors. Patients with NHL or CLL who fall into these categories should not consider their immunity from vaccination to be assured. If infected with SARS-CoV-2, they should be a high priority for monoclonal antibody directed therapy. Unless immune response to vaccination is confirmed with laboratory testing, they should continue to mask, socially distance, and to avoid close contact with non-vaccinated individuals.

8.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048708

RESUMO

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas de Neoplasias/metabolismo , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , COVID-19/genética , Linhagem Celular , Citocinas , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/química , Proteínas de Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
9.
Cell Rep ; 28(2): 460-471.e5, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291581

RESUMO

Understanding the fundamental mechanisms of arbovirus transmission and pathogenesis is essential to develop strategies for treatment and prevention. We previously took an in vivo evolution-based approach and identified the chikungunya virus E1 glycoprotein residue 80 to play a critical role in viral transmission and pathogenesis. In this study, we address the genetic conservation and function of position 80 and demonstrate that this residue is a key determinant in alphavirus infectivity and dissemination through modulation of viral fusion and cholesterol dependence. In addition, in studying the evolution of position 80, we identified a network of glycoprotein residues, including epidemic determinants, that regulate virus dissemination and infectivity. These studies underscore the importance of taking evolution-based approaches to not only identify key viral determinants driving arbovirus transmission and pathogenesis but also to uncover fundamental aspects of arbovirus biology.


Assuntos
Vírus Chikungunya/genética , Glicoproteínas/metabolismo , Proteínas do Envelope Viral/genética , Viroses/genética , Replicação Viral/genética , Animais , Humanos , Transfecção
10.
J Virol ; 89(22): 11233-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311883

RESUMO

UNLABELLED: To date, the majority of work on RNA virus replication fidelity has focused on the viral RNA polymerase, while the potential role of other viral replicase proteins in this process is poorly understood. Previous studies used resistance to broad-spectrum RNA mutagens, such as ribavirin, to identify polymerases with increased fidelity that avoid misincorporation of such base analogues. We identified a novel variant in the alphavirus viral helicase/protease, nonstructural protein 2 (nsP2) that operates in concert with the viral polymerase nsP4 to further alter replication complex fidelity, a functional linkage that was conserved among the alphavirus genus. Purified chikungunya virus nsP2 presented delayed helicase activity of the high-fidelity enzyme, and yet purified replication complexes manifested stronger RNA polymerization kinetics. Because mutagenic nucleoside analogs such as ribavirin also affect intracellular nucleotide pools, we addressed the link between nucleotide depletion and replication fidelity by using purine and pyrimidine biosynthesis inhibitors. High-fidelity viruses were more resistant to these conditions, and viral growth could be rescued by the addition of exogenous nucleosides, suggesting that mutagenesis by base analogues requires nucleotide pool depletion. This study describes a novel function for nsP2, highlighting the role of other components of the replication complex in regulating viral replication fidelity, and suggests that viruses can alter their replication complex fidelity to overcome intracellular nucleotide-depleting conditions. IMPORTANCE: Previous studies using the RNA mutagen ribavirin to select for drug-resistant variants have highlighted the essential role of the viral RNA-dependent RNA polymerase in regulating replication fidelity. However, the role of other viral replicase components in replication fidelity has not been studied in detail. We identified here an RNA mutagen-resistant variant of the nsP2 helicase/protease that conferred increased fidelity and yet could not operate in the same manner as high-fidelity polymerases. We show that the alphavirus helicase is a key component of the fidelity-regulating machinery. Our data show that the RNA mutagenic activity of compounds such as ribavirin is coupled to and potentiated by nucleotide depletion and that RNA viruses can fine-tune their replication fidelity when faced with an intracellular environment depleted of nucleotides.


Assuntos
Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/metabolismo , RNA Helicases/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/fisiologia , Animais , Antivirais/farmacologia , Sequência de Bases , Linhagem Celular , Vírus Chikungunya/genética , Chlorocebus aethiops , Cricetinae , Cisteína Endopeptidases/genética , Replicação do DNA/efeitos dos fármacos , Células HeLa , Humanos , Mutação/genética , Nucleotídeos/deficiência , Purinas/biossíntese , Pirimidinas/biossíntese , RNA Helicases/genética , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/genética , Ribavirina/farmacologia , Análise de Sequência de RNA , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Células Vero , Replicação Viral/genética
11.
J Virol ; 85(4): 1706-17, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147927

RESUMO

The hepatitis C virus (HCV) NS2 protein is essential for particle assembly, but its function in this process is unknown. We previously identified critical genetic interactions between NS2 and the viral E1-E2 glycoprotein and NS3-NS4A enzyme complexes. Based on these data, we hypothesized that interactions between these viral proteins are essential for HCV particle assembly. To identify interaction partners of NS2, we developed methods to site-specifically biotinylate NS2 in vivo and affinity capture NS2-containing protein complexes from virus-producing cells with streptavidin magnetic beads. By using these methods, we confirmed that NS2 physically interacts with E1, E2, and NS3 but did not stably interact with viral core or NS5A proteins. We further characterized these protein complexes by blue native polyacrylamide gel electrophoresis and identified ≈ 520-kDa and ≈ 680-kDa complexes containing E2, NS2, and NS3. The formation of NS2 protein complexes was dependent on coexpression of the viral p7 protein and enhanced by cotranslation of viral proteins as a polyprotein. Further characterization indicated that the glycoprotein complex interacts with NS2 via E2, and the pattern of N-linked glycosylation on E1 and E2 suggested that these interactions occur in the early secretory pathway. Importantly, several mutations that inhibited virus assembly were shown to inhibit NS2 protein complex formation, and NS2 was essential for mediating the interaction between E2 and NS3. These studies demonstrate that NS2 plays a central organizing role in HCV particle assembly by bringing together viral structural and nonstructural proteins.


Assuntos
Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA