Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 162: 105812, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753215

RESUMO

The absorption of oral drugs is frequently plagued by significant variability with potentially serious therapeutic consequences. The source of variability can be traced back to interindividual variability in physiology, differences in special populations (age- and disease-dependent), drug and formulation properties, or food-drug interactions. Clinical evidence for the impact of some of these factors on drug pharmacokinetic variability is mounting: e.g. gastric pH and emptying time, small intestinal fluid properties, differences in pediatrics and the elderly, and surgical changes in gastrointestinal anatomy. However, the link of colonic factors variability (transit time, fluid composition, microbiome), sex differences (male vs. female) and gut-related diseases (chronic constipation, anorexia and cachexia) to drug absorption variability has not been firmly established yet. At the same time, a way to decrease oral drug pharmacokinetic variability is provided by the pharmaceutical industry: clinical evidence suggests that formulation approaches employed during drug development can decrease the variability in oral exposure. This review outlines the main drivers of oral drug exposure variability and potential approaches to overcome them, while highlighting existing knowledge gaps and guiding future studies in this area.


Assuntos
Absorção Intestinal , Preparações Farmacêuticas , Administração Oral , Idoso , Criança , Feminino , Interações Alimento-Droga , Trato Gastrointestinal/metabolismo , Humanos , Masculino , Preparações Farmacêuticas/metabolismo , Farmacocinética
2.
Eur J Pharm Biopharm ; 90: 1-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25592324

RESUMO

The aim of this study was to evaluate the intestinal disposition of abiraterone acetate, an ester prodrug of the anticancer agent abiraterone. Stability of the prodrug and solubility and dissolution characteristics of both abiraterone and abiraterone acetate were monitored in vitro. Moreover, the in vivo intraluminal concentrations of abiraterone and abiraterone acetate upon intake of one tablet of 250 mg abiraterone acetate were assessed in healthy volunteers. The intestinal absorption resulting from the intraluminal behavior of the ester prodrug was determined using the rat in situ intestinal perfusion technique with mesenteric blood sampling. Simulated and aspirated human intestinal fluids of the fasted state were used as solvent systems. Upon incubation of abiraterone acetate in human intestinal fluids in vitro, rapid hydrolysis of the prodrug was observed, generating abiraterone concentrations largely exceeding the apparent solubility of abiraterone, suggesting the existence of intestinal supersaturation. These findings were confirmed in vivo, by intraluminal sampling of duodenal fluids upon oral intake of an abiraterone acetate tablet by healthy volunteers. Rat in situ intestinal perfusion experiments performed with suspensions of abiraterone and abiraterone acetate in human intestinal fluids of the fasted state revealed significantly higher flux values upon perfusion with the prodrug than with abiraterone. Moreover, rat in situ intestinal perfusion with abiraterone acetate suspensions in simulated fluids of the fasted state in presence or absence of esterases demonstrated that increased hydrolytic activity of the perfusion medium was beneficial to the intestinal absorption of abiraterone. In conclusion, the rapid hydrolysis of abiraterone acetate in the intraluminal environment appears to result in fast and extensive generation of abiraterone supersaturation, creating a strong driving force for abiraterone absorption.


Assuntos
Acetato de Abiraterona/metabolismo , Ésteres/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Pró-Fármacos/metabolismo , Administração Oral , Adulto , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Adulto Jovem
3.
Eur J Pharm Sci ; 49(1): 51-6, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23395914

RESUMO

The expression of P-gp increases from proximal to distal parts of the small intestine, whereas for P450 enzymes the expression is reported to be highest in duodenum and jejunum, decreasing to more distal sites. To evaluate to what extent the regional differences in expression of P-gp and P450 enzymes affect the absorption of a dual substrate, we investigated the transport of darunavir across different small intestinal segments (duodenum, proximal jejunum and ileum). Moreover, the effect of ketoconazole on the intestinal absorption of darunavir was explored, since these drugs are commonly co-administered. Performing the rat in situ intestinal perfusion technique with mesenteric blood sampling, we found no significant differences in the transport of darunavir at the different intestinal segments. The involvement of P-gp in the absorption of darunavir was clearly shown by coperfusion of darunavir with the P-gp inhibitor zosuquidar. In presence of zosuquidar, a 2.2-, 4.2- and 5.7-fold increase in Papp values were measured for duodenum, proximal jejunum and ileum, respectively. Involvement of P450 mediated metabolism in the absorption of darunavir could not be demonstrated in this rat model. Upon studying the drug-drug interaction of darunavir with ketoconazole, data were indicative for an inhibitory effect of ketoconazole on P-gp as the main mechanism for the increased transport of darunavir across the small intestine.


Assuntos
Absorção Intestinal , Mucosa Intestinal/metabolismo , Cetoconazol/química , Cetoconazol/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Animais , Células CACO-2 , Darunavir , Humanos , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA