Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1238-1251, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414244

RESUMO

Chimeric antigen receptor (CAR) T cell therapies have demonstrated immense clinical success for B cell and plasma cell malignancies. We tested their impact on the viral reservoir in a macaque model of HIV persistence, comparing the functions of CD20 CAR T cells between animals infected with simian/human immunodeficiency virus (SHIV) and uninfected controls. We focused on the potential of this approach to disrupt B cell follicles (BCFs), exposing infected cells for immune clearance. In SHIV-infected animals, CAR T cells were highly functional, with rapid expansion and trafficking to tissue-associated viral sanctuaries, including BCFs and gut-associated lymphoid tissue (GALT). CD20 CAR T cells potently ablated BCFs and depleted lymph-node-associated follicular helper T (TFH) cells, with complete restoration of BCF architecture and TFH cells following CAR T cell contraction. BCF ablation decreased the splenic SHIV reservoir but was insufficient for effective reductions in systemic viral reservoirs. Although associated with moderate hematologic toxicity, CD20 CAR T cells were well tolerated in SHIV-infected and control animals, supporting the feasibility of this therapy in people living with HIV with underlying B cell malignancies. Our findings highlight the unique ability of CD20 CAR T cells to safely and reversibly unmask TFH cells within BCF sanctuaries, informing future combinatorial HIV cure strategies designed to augment antiviral efficacy.


Assuntos
Antígenos CD20 , Linfócitos B , Modelos Animais de Doenças , Infecções por HIV , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antígenos CD20/metabolismo , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Imunoterapia Adotiva/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Infecções por HIV/terapia , Infecções por HIV/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , HIV-1/imunologia , Carga Viral , Macaca mulatta
2.
PLoS Pathog ; 18(4): e1009990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395058

RESUMO

Syrian golden hamsters exhibit features of severe disease after SARS-CoV-2 WA1/2020 challenge and are therefore useful models of COVID-19 pathogenesis and prevention with vaccines. Recent studies have shown that SARS-CoV-2 infection stimulates type I interferon, myeloid, and inflammatory signatures similar to human disease and that weight loss can be prevented with vaccines. However, the impact of vaccination on transcriptional programs associated with COVID-19 pathogenesis and protective adaptive immune responses is unknown. Here we show that SARS-CoV-2 WA1/2020 challenge in hamsters stimulates myeloid and inflammatory programs as well as signatures of complement and thrombosis associated with human COVID-19. Notably, immunization with Ad26.COV2.S, an adenovirus serotype 26 vector (Ad26)-based vaccine expressing a stabilized SARS-CoV-2 spike protein, prevents the upregulation of these pathways, such that the mRNA expression profiles of vaccinated hamsters are comparable to uninfected animals. Using proteomics profiling, we validated these findings in rhesus macaques challenged with SARS-CoV-2 WA1/2020 or SARS-CoV-2 B.1.351. Finally, we show that Ad26.COV2.S vaccination induces T and B cell signatures that correlate with binding and neutralizing antibody responses weeks following vaccination. These data provide insights into the molecular mechanisms of Ad26.COV2.S protection against severe COVID-19 in animal models.


Assuntos
COVID-19 , Trombose , Ad26COVS1 , Animais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Cricetinae , Humanos , Inflamação , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Regulação para Cima
3.
Abdom Radiol (NY) ; 46(3): 1263-1271, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32939636

RESUMO

OBJECTIVES: To determine the feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients. METHODS: 60 patients who expired between 04/22/2020-05/06/2020 due to COVID-19 were considered for inclusion in the study, based on availability of study staff. Minimally invasive ultrasound-guided autopsy was performed with 14G core biopsies through a 13G coaxial needle. The protocol required 20 cores of the liver, 30 of lung, 12 of spleen, 20 of heart, 20 of kidney, 4 of breast, 4 of testis, 2 of skeletal muscle, and 4 of fat with total of 112 cores per patient. Quality of the samples was evaluated by number, size, histology, immunohistochemistry, and in situ hybridization for COVID-19 and PCR-measured viral loads for SARS-CoV-2. RESULTS: Five (5/60, 8%) patients were included. All approached families gave their consent for the minimally invasive autopsy. All organs for biopsy were successfully targeted with ultrasound guidance obtaining all required samples, apart from 2 patients where renal samples were not obtained due to atrophic kidneys. The number, size, and weight of the tissue cores met expectation of the research group and tissue histology quality was excellent. Pathology findings were concordant with previously reported autopsy findings for COVID-19. Highest SARS-CoV-2 viral load was detected in the lung, liver, and spleen that had small to moderate amount, and low viral load in was detected in the heart in 2/5 (40%). No virus was detected in the kidney (0/3, 0%). CONCLUSIONS: Ultrasound-guided percutaneous post-mortem core biopsies can safely provide adequate tissue. Highest SARS-CoV-2 viral load was seen in the lung, followed by liver and spleen with small amount in the myocardium.


Assuntos
Autopsia/métodos , COVID-19/patologia , Ultrassonografia de Intervenção/métodos , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
4.
Nat Med ; 26(11): 1694-1700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32884153

RESUMO

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Assuntos
Adenoviridae/genética , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/uso terapêutico , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Masculino , Mesocricetus , SARS-CoV-2/genética , Índice de Gravidade de Doença , Vacinas Sintéticas/genética , Vacinas Sintéticas/uso terapêutico , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA