Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 1: 586-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25126518

RESUMO

Clinical and animal studies have documented that hearts of the elderly are more susceptible to ischemia/reperfusion damage compared to young adults. Recently we found that aging-dependent increase in susceptibility of cardiomyocytes to apoptosis was attributable to decrease in cytosolic glutaredoxin 1 (Grx1) and concomitant decrease in NF-κB-mediated expression of anti-apoptotic proteins. Besides primary localization in the cytosol, Grx1 also exists in the mitochondrial intermembrane space (IMS). In contrast, Grx2 is confined to the mitochondrial matrix. Here we report that Grx1 is decreased by 50-60% in the IMS, but Grx2 is increased by 1.4-2.6 fold in the matrix of heart mitochondria from elderly rats. Determination of in situ activities of the Grx isozymes from both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria revealed that Grx1 was fully active in the IMS. However, Grx2 was mostly in an inactive form in the matrix, consistent with reversible sequestration of the active-site cysteines of two Grx2 molecules in complex with an iron-sulfur cluster. Our quantitative evaluations of the active/inactive ratio for Grx2 suggest that levels of dimeric Grx2 complex with iron-sulfur clusters are increased in SSM and IFM in the hearts of elderly rats. We found that the inactive Grx2 can be fully reactivated by sodium dithionite or exogenous superoxide production mediated by xanthine oxidase. However, treatment with rotenone, which generates intramitochondrial superoxide through inhibition of mitochondrial respiratory chain Complex I, did not lead to Grx2 activation. These findings suggest that insufficient ROS accumulates in the vicinity of dimeric Grx2 to activate it in situ.


Assuntos
Envelhecimento/metabolismo , Glutarredoxinas/metabolismo , Mitocôndrias Cardíacas/enzimologia , Animais , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Ratos , Ratos Endogâmicos F344
2.
Antioxid Redox Signal ; 12(12): 1339-53, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19938943

RESUMO

Cardiomyocyte apoptosis is a well-established contributor to irreversible injury following myocardial infarction (MI). Increased cardiomyocyte apoptosis is associated also with aging in animal models, exacerbated by MI; however, mechanisms for this increased sensitivity to oxidative stress are unknown. Protein mixed-disulfide formation with glutathione (protein glutathionylation) is known to change the function of intermediates that regulate apoptosis. Since glutaredoxin (Grx) specifically catalyzes protein deglutathionylation, we examined its status with aging and its influence on regulation of apoptosis. Grx1 content and activity are decreased by approximately 40% in elderly (24-mo) Fischer 344 rat hearts compared to adult (6-mo) controls. A similar extent of Grx1 knockdown in H9c2 cardiomyocytes led to increased apoptosis, decreased NFkappaB-dependent transcriptional activity, and decreased production (mRNA and protein) of anti-apoptotic NFkappaB target genes, Bcl-2 and Bcl-xL. Knockdown of Bcl-2 and/or Bcl-xL in wild-type H9c2 cells to the same extent ( approximately 50%) as observed in Grx1-knockdown cells increased baseline apoptosis; and knockdown of Bcl-xL, but not Bcl-2, also increased oxidant-induced apoptosis analogous to Grx1-knockdown cells. Natural Grx1-deficient cardiomyocytes isolated from elderly rats also displayed diminished NFkappaB activity and Bcl-xL content. Taken together, these data indicate diminution of Grx1 in elderly animals contributes to increased apoptotic susceptibility via regulation of NFkappaB function.


Assuntos
Envelhecimento/metabolismo , Apoptose/fisiologia , Glutarredoxinas/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteína bcl-X/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Genes bcl-2 , Glutarredoxinas/antagonistas & inibidores , Glutarredoxinas/genética , Peróxido de Hidrogênio/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/antagonistas & inibidores , Oxirredução , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos F344 , Proteína bcl-X/biossíntese , Proteína bcl-X/genética
3.
Antioxid Redox Signal ; 11(5): 1059-81, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19119916

RESUMO

Glutaredoxins are small, heat-stable proteins that exhibit a characteristic thioredoxin fold and a CXXC/S active-site motif. A variety of glutathione (GSH)-dependent catalytic activities have been attributed to the glutaredoxins, including reduction of ribonucleotide reductase, arsenate, and dehydroascorbate; assembly of iron sulfur cluster complexes; and protein glutathionylation and deglutathionylation. Catalysis of reversible protein glutathionylation by glutaredoxins has been implicated in regulation of redox signal transduction and sulfhydryl homeostasis in numerous contexts in health and disease. This forum review is presented in two parts. Part I is focused primarily on the mechanism of the deglutathionylation reaction catalyzed by prototypical dithiol glutaredoxins, especially human Grx1 and Grx2. Grx-catalyzed protein deglutathionylation proceeds by a nucleophilic, double-displacement mechanism in which rate enhancement is attributed to special reactivity of the low pK(a) cysteine at its active site, and to increased nucleophilicity of the second substrate, GSH. Glutaredoxins (and Grx domains) have been identified in most organisms, and many exhibit deglutathionylation or other activities or both. Further characterization according to glutathionyl selectivity, physiological substrates, and intracellular roles may lead to subclassification of this family of enzymes. Part II presents potential mechanisms for in vivo regulation of Grx activity, providing avenues for future studies.


Assuntos
Dissulfetos/química , Glutarredoxinas/química , Compostos de Sulfidrila/química , Catálise , Humanos , Especificidade por Substrato
4.
Biochemistry ; 47(42): 11144-57, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18816065

RESUMO

Glutaredoxin (Grx)-catalyzed deglutathionylation of protein-glutathione mixed disulfides (protein-SSG) serves important roles in redox homeostasis and signal transduction, regulating diverse physiological and pathophysiological events. Mammalian cells have two Grx isoforms: Grx1, localized to the cytosol and mitochondrial intermembrane space, and Grx2, localized primarily to the mitochondrial matrix [Pai, H. V., et al. (2007) Antioxid. Redox Signaling 9, 2027-2033]. The catalytic behavior of Grx1 has been characterized extensively, whereas Grx2 catalysis is less well understood. We observed that human Grx1 and Grx2 exhibit key catalytic similarities, including selectivity for protein-SSG substrates and a nucleophilic, double-displacement, monothiol mechanism exhibiting a strong commitment to catalysis. A key distinction between Grx1- and Grx2-mediated deglutathionylation is decreased catalytic efficiency ( k cat/ K M) of Grx2 for protein deglutathionylation (due primarily to a decreased k cat), reflecting a higher p K a of its catalytic cysteine, as well as a decreased enhancement of nucleophilicity of the second substrate, GSH. As documented previously for hGrx1 [Starke, D. W., et al. (2003) J. Biol. Chem. 278, 14607-14613], hGrx2 catalyzes glutathione-thiyl radical (GS (*)) scavenging, and it also mediates GS transfer (protein S-glutathionylation) reactions, where GS (*) serves as a superior glutathionyl donor substrate for formation of GAPDH-SSG, compared to GSNO and GSSG. In contrast to its lower k cat for deglutathionylation reactions, Grx2 promotes GS-transfer to the model protein substrate GAPDH at rates equivalent to those of Grx1. Estimation of Grx1 and Grx2 concentrations within mitochondria predicts comparable deglutathionylation activities within the mitochondrial subcompartments, suggesting localized regulatory functions for both isozymes.


Assuntos
Glutarredoxinas/metabolismo , Animais , Bovinos , Dissulfeto de Glutationa/análogos & derivados , Dissulfeto de Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Camundongos , Modelos Químicos , Proteínas Recombinantes/metabolismo , Soroalbumina Bovina/metabolismo , Espectrofotometria , Especificidade por Substrato
5.
J Biol Chem ; 282(25): 18427-18436, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17468103

RESUMO

In murine embryonic fibroblasts, N-acetyl-L-cysteine (NAC), a GSH generating agent, enhances hypoxic apoptosis by blocking the NFkappaB survival pathway (Qanungo, S., Wang, M., and Nieminen, A. L. (2004) J. Biol. Chem. 279, 50455-50464). Here, we examined sulfhydryl modifications of the p65 subunit of NFkappaB that are responsible for NFkappaB inactivation. In MIA PaCa-2 pancreatic cancer cells, hypoxia increased p65-NFkappaB DNA binding and NFkappaB transactivation by 2.6- and 2.8-fold, respectively. NAC blocked these events without having an effect on p65-NFkappaB protein levels and p65-NFkappaB nuclear translocation during hypoxia. Pharmacological inhibition of the NFkappaB pathway also induced hypoxic apoptosis, indicating that the NFkappaB signaling pathway is a major protective mechanism against hypoxic apoptosis. In cell lysates after hypoxia and treatment with N-ethylmaleimide (thiol alkylating agent), dithiothreitol (disulfide reducing agent) was not able to increase binding of p65-NFkappaB to DNA, suggesting that most sulfhydryls in p65-NFkappaB protein were in reduced and activated forms after hypoxia, thereby being blocked by N-ethylmaleimide. In contrast, with hypoxic cells that were also treated with NAC, dithiothreitol increased p65-NFkappaB DNA binding. Glutaredoxin (GRx), which specifically catalyzes reduction of protein-SSG mixed disulfides, reversed inhibition of p65-NFkappaB DNA binding in extracts from cells treated with hypoxia plus NAC and restored NFkappaB activity. This finding indicated that p65-NFkappaB-SSG was formed in situ under hypoxia plus NAC conditions. In cells, knock-down of endogenous GRx1, which also promotes protein glutathionylation under hypoxic radical generating conditions, prevented NAC-induced NFkappaB inactivation and hypoxic apoptosis. The results indicate that GRx-dependent S-glutathionylation of p65-NFkappaB is most likely responsible for NAC-mediated NFkappaB inactivation and enhanced hypoxic apoptosis.


Assuntos
Apoptose , Glutationa/metabolismo , Fator de Transcrição RelA/metabolismo , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA/química , Glutarredoxinas , Humanos , Hipóxia , Oxirredutases/metabolismo , Oxigênio/metabolismo , Ativação Transcricional , Transfecção
6.
Biochemistry ; 45(29): 8978-87, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16846241

RESUMO

Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.


Assuntos
Gliotoxina/farmacologia , Oxirredutases/antagonistas & inibidores , Piperazinas/farmacologia , Esporidesminas/farmacologia , Substituição de Aminoácidos , Dissulfetos/farmacologia , Ditiotreitol/química , Glutarredoxinas , Glutationa/metabolismo , Modelos Químicos , Oxirredutases/genética , Oxirredutases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esporidesminas/metabolismo , Relação Estrutura-Atividade
7.
Biochemistry ; 45(15): 4785-96, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16605247

RESUMO

Human glutaredoxin (GRx), also known as thioltransferase, is a 12 kDa thiol-disulfide oxidoreductase that is highly selective for reduction of glutathione-containing mixed disulfides. The apparent pK(a) for the active site Cys22 residue is approximately 3.5. Previously we observed that the catalytic enhancement by glutaredoxin could be ascribed fully to the difference between the pK(a) of its Cys22 thiol moiety and the pK(a) of the product thiol, each acting as a leaving group in the enzymatic and nonenzymatic reactions, respectively [Srinivasan et al. (1997), Biochemistry 36, 3199-3206]. Continuum electrostatic calculations suggest that the low pK(a) of Cys22 results primarily from stabilization of the thiolate anion by a specific ion-pairing with the positively charged Lys19 residue, although hydrogen bonding interactions with Thr21 also appear to contribute. Variants of Lys19 were considered to further assess the predicted role of Lys19 on the pK(a) of Cys22. The variants K19Q and K19L were generated by molecular modeling, and the pK(a) value for Cys22 was calculated for each variant. For K19Q, the predicted Cys22 pK(a) is 7.3, while the predicted value is 8.3 for K19L. The effects of the mutations on the interaction energy between the adducted glutathionyl moiety and GRx were roughly estimated from the van der Waals and electrostatic energies between the glutathionyl moiety and proximal protein residues in a mixed disulfide adduct of GRx and glutathione, i.e., the GRx-SSG intermediate. The values for the K19 mutants differed by only a small amount compared to those for the wild type enzyme intermediate. Together, the computational analysis predicted that the mutant enzymes would have markedly reduced catalytic rates while retaining the glutathionyl specificity displayed by the wild type enzyme. Accordingly, we constructed and characterized the K19L and K19Q mutants of two forms of the GRx enzyme. Each of the mutants retained glutathionyl specificity as predicted and displayed diminution in activity, but the decreases in activity were not to the extent predicted by the theoretical calculations. Changes in the respective Cys22-thiol pK(a) values of the mutant enzymes, as shown by pH profiles for iodoacetamide inactivation of the respective enzymes, clearly revealed that the K19-C22 ion pair cannot fully account for the low pK(a) of the Cys22 thiol. Additional contributions to stabilization of the Cys22 thiolate are likely donated by Thr21 and the N-terminal partial positive charge of the neighboring alpha-helix.


Assuntos
Biologia Computacional/métodos , Cisteína/metabolismo , Mutagênese Sítio-Dirigida/métodos , Oxirredutases/química , Sequência de Aminoácidos , Animais , Catálise , Cisteína/química , Cisteína/genética , Glutarredoxinas , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
8.
Biochemistry ; 42(14): 4235-42, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12680778

RESUMO

In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.


Assuntos
Glutationa/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Mitocôndrias Cardíacas/metabolismo , Animais , Peróxido de Hidrogênio/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/metabolismo , terc-Butil Hidroperóxido/farmacologia
9.
J Biol Chem ; 278(17): 14607-13, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12556467

RESUMO

Glutaredoxin (GRx, thioltransferase) is implicated in cellular redox regulation, and it is known for specific and efficient catalysis of reduction of protein-S-S-glutathione-mixed disulfides (protein-SSG) because of its remarkably low thiol pK(a) ( approximately 3.5) and its ability to stabilize a catalytic S-glutathionyl intermediate (GRx-SSG). These unique properties suggested that GRx might also react with glutathione-thiyl radicals (GS(.)) and stabilize a disulfide anion radical intermediate (GRx-SSG), thereby facilitating the conversion of GS(.) to GSSG or transfer of GS(.) to form protein-SSG. We found that GRx catalyzes GSSG formation in the presence of GS-thiyl radical generating systems (Fe(2+)/ADP/H(2)O(2) + GSH or horseradish peroxidase/H(2)O(2) + GSH). Catalysis is dependent on O(2) and results in concomitant superoxide formation, and it is distinguished from glutathione peroxidase-like activity. With the horseradish peroxidase system and [(35)S]GSH, GRx enhanced the rate of GS-radiolabel incorporation into GAPDH. GRx also enhanced the rate of S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase with GSSG or S-nitrosoglutathione, but these glutathionyl donors were much less efficient. Both actin and protein-tyrosine phosphatase-1B were superior substrates for GRx-facilitated S-glutathionylation with GS-radical. These studies characterize GRx as a versatile catalyst, facilitating GS-radical scavenging and S-glutathionylation of redox signal mediators, consistent with a critical role in cellular regulation.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Glutationa/metabolismo , Oxirredutases/metabolismo , Proteína Dissulfeto Redutase (Glutationa) , Catálise , Grupo dos Citocromos c/metabolismo , Glutarredoxinas , Dissulfeto de Glutationa/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Cinética , Oxirredução , Oxirredutases/fisiologia , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA