Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 59(17): 9457-65, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21854077

RESUMO

The L-cysteine derivatives (R)-2-amino-3-(methyldisulfanyl)propanoic acid (S-methylthio-L-cysteine), (R)-2-amino-3-(propyldisulfanyl)propanoic acid (S-propylthio-L-cysteine), (R)-2-amino-3-(1-propenyldisulfanyl)propanoic acid (S-(1-propenylthio)-L-cysteine), and (R)-2-amino-3-(2-propenyldisulfanyl)propanoic acid (S-allylthio-L-cysteine) were prepared from 3-[(methoxycarbonyl)dithio]-L-alanine, obtained from the reaction of L-cysteine with methoxycarbonylsulfenyl chloride. The occurrence of these S-(+)-alk(en)ylthio-L-cysteine derivatives in onion (Allium cepa L.) was proven by using UPLC-MS-ESI(+) in SRM mode. Their concentrations in fresh onion were estimated to be 0.19 mg/kg S-methylthio-L-cysteine, 0.01 mg/kg S-propylthio-L-cysteine, and 0.56 mg/kg (S-(1-propenyllthio)-L-cysteine, concentrations that are about 3000 times lower than that of isoalliin (S-(1-propenyl-S-oxo-L-cysteine). These compounds were treated with Fusobacterium nucleatum, a microorganism responsible for the formation of mouth malodor. These L-cysteine disulfides were demonstrated to predominantly produce tri- and tetrasulfides. Isoalliin is almost entirely consumed by the plant enzyme alliin lyase (EC 4.4.1.4 S-alk(en)yl-S-oxo-L-cysteine lyase) in a few seconds, but it is not transformed by F. nucleatum. This example of flavor modulation shows that the plant produces different precursors, leading to the formation of the same types of volatile sulfur compounds. Whereas the plant enzyme efficiently transforms S-alk(en)yl-S-oxo-L-cysteine, mouth bacteria are responsible for the transformation of S-alk(en)ylthio-L-cysteine.


Assuntos
Cisteína/análogos & derivados , Cebolas/química , Liases de Carbono-Enxofre/metabolismo , Cromatografia Líquida de Alta Pressão , Cisteína/análise , Cisteína/metabolismo , Dissulfetos/metabolismo , Fusobacterium nucleatum/metabolismo , Boca/microbiologia , Odorantes , Raízes de Plantas/química , Espectrometria de Massas por Ionização por Electrospray , Compostos de Enxofre/metabolismo , Compostos Orgânicos Voláteis/metabolismo
2.
J Agric Food Chem ; 59(7): 3358-65, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21375341

RESUMO

The objective of this study was to verify whether the volatile organic sulfur compounds recently discovered in bell pepper (Capsicum annuum, L. cultivars), such as the mercapto-ketones: 4-sulfanyl-2-heptanone and 2-sulfanyl-4-heptanone, the mercapto-alcohols: 4-sulfanyl-2-heptanol and 2-sulfanyl-4-heptanol, and heptane-2,4-dithiol, originate from their corresponding cysteine-S-conjugates. Analysis of aqueous extracts of red and green bell pepper by ultraperformance liquid chromatography-mass spectrometry with electrospray ionization in the positive mode (UPLC-MS ESI(+)) displayed masses corresponding to the expected cysteine-S-conjugates. To confirm this observation, four cysteine-S-conjugates were prepared as authentic samples: S-(3-hydroxy-1-methylhexyl)-L-cysteine, S-(3-hydroxy-1-propylbutyl)-L-cysteine, S-(3-oxo-1-propylbutyl)-L-cysteine, and (2R,2'R)-3,3'-(4-hydroxyheptane-2,6-diyl)bis(sulfanediyl) bis(2-aminopropanoic acid). By comparison with the fragmentation patterns and retention times of synthetic mixtures of cysteine-S-conjugate diastereoisomers, the natural occurrence of cysteine conjugates was confirmed in bell peppers. In addition, the cysteine-S-conjugates from red and green bell pepper extracts were concentrated by ion exchange chromatography and the fractions incubated with a ß-lyase (apotryptophanase). The liberated thiols were concentrated by affinity chromatography, and their occurrence, detected by gas chromatography-mass spectrometry, confirmed our predictions. Moreover, 3-sulfanyl-1-hexanol was also detected and the occurrence of S-(1(2-hydroxyethyl)butyl)-L-cysteine confirmed. A quantitative estimation based on external calibration curves, established by UPLC-MS ESI(+) in selected reaction monitoring mode, showed that cysteine-S-conjugates were present at concentrations in the range of 1 to 100 µg/kg (±20%).


Assuntos
Capsicum/química , Cisteína/análise , Frutas/química , Compostos de Enxofre/análise , Compostos Orgânicos Voláteis/análise , Cisteína/química , Cisteína/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Sulfidrila/metabolismo , Triptofanase/metabolismo
3.
Chem Senses ; 34(3): 203-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19147808

RESUMO

The volatile fatty acid, (R)/(S)-3-hydroxy-3-methylhexanoic acid ((R)/(S)-HMHA), and the human specific volatile thiol, (R)/(S)-3-methyl-3-sulfanylhexan-1-ol ((R)/(S)-MSH), were recently identified as major components of human sweat malodor. Their 2 corresponding precursors were subsequently isolated from sterile and odorless axillary secretions. The purpose of this work was to analyze these 2 odor precursors in 49 male and female volunteers over a period of 3 years to elucidate to which extent they are implicated in the gender-specific character of body odor. Surprisingly, the ratio between the acid precursor 1, a glutamine conjugate, and the "sulfur" precursor 2, a cysteinylglycine-S-conjugate, was 3 times higher in men than in women with no correlation with either the sweat volume or the protein concentration. Indeed, women have the potential to liberate significantly more (R)/(S)-MSH, which has a tropical fruit- and onion-like odor than (R)/(S)-HMHA (possibly transformed into (E)/(Z)-3-methyl-2-hexenoic acid) that has a cheesy, rancid odor. Parallel to this work, sensory analysis on sweat incubated with isolated skin bacteria (Staphylococcus epidermidis Ax3, Corynebacterium jeikeium American Type Culture Collection 43217, or Staphylococcus haemolyticus Ax4) confirmed that intrinsic composition of sweat is important for the development of body odors and may be modulated by gender differences in bacterial compositions. Sweat samples having the highest sulfur intensity were also found to be the most intense and the most unpleasant.


Assuntos
Secreções Corporais/química , Hexanóis/química , Odorantes/análise , Ácidos Sulfanílicos/química , Suor/química , Axila/microbiologia , Axila/fisiologia , Corynebacterium/química , Corynebacterium/isolamento & purificação , Feminino , Humanos , Masculino , Caracteres Sexuais , Fatores Sexuais , Staphylococcus epidermidis/química , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus haemolyticus/química , Staphylococcus haemolyticus/isolamento & purificação , Suor/microbiologia , Sudorese
4.
J Agric Food Chem ; 56(20): 9575-80, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18811169

RESUMO

Volatile sulfur compounds have a low odor threshold, and their presence at microgram per kilogram levels in fruits and vegetables influences odor quality. Sensory analysis demonstrates that naturally occurring, odorless cysteine- S-conjugates such as S-( R/ S)-3-(1-hexanol)- l-cysteine in wine, S-(1-propyl)- l-cysteine in onion, and S-(( R/ S)-2-heptyl)- l-cysteine in bell pepper are transformed into volatile thiols in the mouth by microflora. The time delay in smelling these volatile thiols was 20-30 s, and persistent perception of their odor occurred for 3 min. The cysteine- S-conjugates are transformed in free thiol by anaerobes. The mouth acts as a reactor, adding another dimension to odor perception, and saliva modulates flavors by trapping free thiols.


Assuntos
Frutas/química , Compostos de Enxofre/química , Verduras/química , Feminino , Fusobacterium nucleatum/metabolismo , Humanos , Masculino , Odorantes , Saliva/metabolismo , Compostos de Sulfidrila/metabolismo , Volatilização
5.
J Agric Food Chem ; 55(11): 4511-7, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17488024

RESUMO

During our screening of plant materials to find new natural fragrance and flavor ingredients, we discovered two series of 3-sulfanylalkyl alkanoates in a peel extract of fruits of wild-growing Poncirus trifoliata (L.) Raf. (Rutaceae), a species closely related to Citrus. The two series belong to alkanoates of 3-methyl-3-sulfanylbutan-1-ol and 3-sulfanylhexan-1-ol, respectively, and thus are members of a family of natural molecules having in common a 1,3-positioned O,S moiety. The alkanoate residues comprise all even-numbered saturated fatty acids from C2 (acetate) to C18 (octadecanoate). Among the 20 sulfur-containing compounds identified, 14 are described for the first time as naturally occurring in a botanical species. Several cysteine-S-conjugates were synthesized as hypothetical precursors of the new volatile sulfur-containing constituents, where after S-(3-hydroxy-1,1-dimethylpropyl)-L-cysteine, S-[3-(acetyloxy)-1,1-dimethylpropyl]-L-cysteine, and S-[1-(2-hydroxyethyl)butyl]-L-cysteine were identified in the fruit peel. No cysteine-S-conjugates were detected in the fruit juice.


Assuntos
Extratos Vegetais/química , Poncirus/química , Compostos de Enxofre/isolamento & purificação , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Compostos de Enxofre/química
6.
Chem Biodivers ; 3(2): 150-60, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17193253

RESUMO

Volatile sulfur compounds such as 3-methyl-3-sulfanylhexan-1-ol (1) are largely responsible for axillary-sweat malodors. In this work, we describe the determination of the enantiomer ratio of the trace constituent 1 and the odor description of its antipodes (R)- and (S)-1 by means of multidimensional gas chromatography (MDGC) in combination with chiral gas chromatography-olfactometry (GC-O). This technique allowed the on-line evaluation of the sensory character of both enantiomers via a sniffing port, and is based on a novel double-cool-strand interface (DCSI). First, the system's inertness was tested towards the labile compound 2-methylfuran-3-thiol (MFT; 2). Then, the DCSI was used in a new configuration to achieve olfactive characterization by means of chiral GC-O. In contrast to direct smelling after the chiral column, our technique allows, for the first time, to significantly delay the perception of the second-eluting enantiomer after the first one. This lowers the risk of sensory saturation, as the panelist can recover from the first stimulus, before evaluating the second one. To help programming the DCSI, a dedicated program was set up. The enantiomer ratio of the sweat malodor 1 was determined as (S)/(R) 3 : 1, and the dominating (S)-isomer was shown to largely impart its specific character to the overall odor of the sweat extract.


Assuntos
Temperatura Baixa , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Estereoisomerismo
7.
J Agric Food Chem ; 53(23): 9244-8, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16277429

RESUMO

The reaction of beta,beta-disubstituted acroleins [3-methyl-2-butenal (1), 3-methyl-2-hexenal (2), and citral (3)] with cysteine gave 1:2 adducts of a novel structural type, namely hexahydro-1,4-thiazepines. To the best of our knowledge, the spontaneous formation of a seven-membered heterocycle from the addition of cysteine to alpha,beta-unsaturated aldehydes is unprecedented. The adduct 6 obtained from citral, under acidic conditions, reacted further to give the new bicyclic compound 8.


Assuntos
Acroleína/química , Cisteamina/química , Monoterpenos/química , Tiazepinas/química , Monoterpenos Acíclicos , Aldeídos/química , Espectroscopia de Ressonância Magnética
8.
Chem Biodivers ; 2(6): 705-16, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17192014

RESUMO

A careful study of human axillary microflora led us to the identification of a new strain of Staphylococcus haemolyticus. The role in axillary malodour formation of this microorganism was compared to those of Corynebacterium xerosis and Staphylococcus epidermidis, upon incubation on sterile human eccrine and apocrine axilla sweat. St. haemolyticus was responsible for the strongest sulfury malodour and the generation of the volatile sulfur compound (VSC) (S)-3-methyl-3-sulfanylhexan-1-ol (3). In this study, we investigated the nonvolatile precursors of VSCs. Human axillary sweat was collected, fractionated and analysed by HPLC/APCI-MS (High-Pressure Liquid Chromatography coupled to Atmospheric Pressure Chemical Ionisation Mass Spectrometry). The precursor of 3 was identified as [1-(2-hydroxyethyl)-1-methylbutyl]-L-cysteinylglycine (Cys-Gly-(S)-conjugate; 12). Because Cys-Gly-(S)-conjugates are key intermediates in the glutathione biodetoxification pathway, other derivatives of 12, specifically glutathione-(S)-conjugate 11 and Cys-(S)-conjugate 13, were prepared. Compounds 11 and 13 were not detected by HPLC/MS of sterile sweat. Synthetic homologues 11, 12, and 13 were incubated with C. xerosis, St. heamolyticus, and St. epidermidis. We observed efficient conversion of precursors 12 and 13 to form VSCs when incubated with St. haemolyticus, with a clear preference for 12. C. xerosis and St. epidermidis were less efficient in cleaving Cys-Gly-(S)-conjugate 12 to form the corresponding thiol 3. Incubation of glutathione-(S)-conjugate 11 never led to the formation of 3 under the experimental conditions employed.


Assuntos
Axila/microbiologia , Hexanóis/química , Hexanóis/metabolismo , Odorantes/análise , Staphylococcus haemolyticus/metabolismo , Ácidos Sulfanílicos/química , Ácidos Sulfanílicos/metabolismo , Suor/química , Suor/microbiologia , Humanos , Estrutura Molecular , Staphylococcus haemolyticus/classificação , Staphylococcus haemolyticus/isolamento & purificação
9.
J Agric Food Chem ; 51(24): 7146-55, 2003 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-14611186

RESUMO

Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).


Assuntos
Aldeídos/química , Cisteína/química , Hexanonas/química , Boroidretos/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Químicos , Oxirredução , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA