Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Intern Med ; 118: 108-117, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37550110

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most frequent primary glomerulonephritis and the role of IL-6 in pathogenesis is becoming increasingly important. A recent whole genome DNA methylation screening in IgAN patients identified a hypermethylated region comprising the non-coding RNA Vault RNA 2-1 (VTRNA2-1) that could explain the high IL-6 levels. METHODS: The pathway leading to IL-6 secretion controlled by VTRNA2-1, PKR, and CREB was analyzed in peripheral blood mononuclear cells (PBMCs) isolated from healthy subjects (HS), IgAN patients, transplanted patients with or without IgAN. The role of double and single-strand RNA in controlling the pathway was investigated. RESULTS: VTRNA2-1 was downregulated in IgAN compared to HS and in transplanted IgAN patients (TP-IgAN) compared to non-IgAN transplanted (TP). The loss of the VTRNA2-1 natural restrain in IgAN patients caused PKR hyperphosphorylation, and consequently the activation of CREB by PKR, which, in turn, led to high IL-6 production, both in IgAN and in TP-IgAN patients. IL-6 levels could be decreased by the PKR inhibitor imoxin. In addition, PKR is normally activated by bacterial and viral RNA, and we found that both the RNA poly(I:C), and the COVID-19 RNA-vaccine stimulation significantly increased the IL-6 levels in PBMCs from HS but had an opposite effect in those from IgAN patients. CONCLUSION: The discovery of the upregulated VTRNA2-1/PKR/CREB/IL-6 pathway in IgAN patients may provide a novel approach to treating the disease and may be useful for the development of precision nephrology and personalized therapy by checking the VTRNA2-1 methylation level in IgAN patients.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/genética , Imunoglobulina A , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , RNA Bacteriano
2.
Cells ; 12(12)2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37371125

RESUMO

Cisplatin is one of the most effective chemotherapeutic agents strongly associated with nephrotoxicity. Tubular adult renal progenitor cells (tARPC) can regenerate functional tubules and participate in the repair processes after cisplatin exposition. This study investigated the molecular mechanisms underlying the protective effect of tARPC on renal epithelium during cisplatin nephrotoxicity. By performing a whole-genome transcriptomic analysis, we found that tARPC, in presence of cisplatin, can strongly influence the gene expression of renal proximal tubular cell [RPTEC] by inducing overexpression of CYP1B1, a member of the cytochrome P450 superfamily capable of metabolizing cisplatin and of hypoxia/cancer-related lncRNAs as MIR210HG and LINC00511. Particularly, tARPC exerted renoprotection and regeneration effects via extracellular vesicles (EV) enriched with CYP1B1 and miR-27b-3p, a well-known CYP1B1 regulatory miRNA. The expression of CYP1B1 by tARPC was confirmed by analyzing biopsies of cisplatin-treated renal carcinoma patients that showed the colocalization of CYP1B1 with the tARPC marker CD133. CYP1B1 was also overexpressed in urinary EV purified from oncologic patients that presented nephrotoxicity episodes after cisplatin treatment. Interestingly CYP1B1 expression significantly correlated with creatinine and eGFR levels. Taken together, our results show that tARPC are able to counteract cisplatin-induced nephrotoxicity via CYP1B1 release through EV. These findings provide a promising therapeutic strategy for nephrotoxicity risk assessment that could be related to abundance of renal progenitors.


Assuntos
Cisplatino , Rim , MicroRNAs , Células-Tronco , Adulto , Humanos , Cisplatino/efeitos adversos , Cisplatino/metabolismo , Cisplatino/farmacologia , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Regulação para Baixo/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo
3.
Front Nutr ; 9: 925619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811945

RESUMO

Obesity is the epidemic of our era and its incidence is supposed to increase by more than 30% by 2030. It is commonly defined as a chronic and metabolic disease with an excessive accumulation of body fat in relation to fat-free mass, both in terms of quantity and distribution at specific points on the body. The effects of obesity have an important impact on different clinical areas, particularly endocrinology, cardiology, and nephrology. Indeed, increased rates of obesity have been associated with increased risk of cardiovascular disease (CVD), cancer, type 2 diabetes (T2D), dyslipidemia, hypertension, renal diseases, and neurocognitive impairment. Obesity-related chronic kidney disease (CKD) has been ascribed to intrarenal fat accumulation along the proximal tubule, glomeruli, renal sinus, and around the kidney capsule, and to hemodynamic changes with hyperfiltration, albuminuria, and impaired glomerular filtration rate. In addition, hypertension, dyslipidemia, and diabetes, which arise as a consequence of overweight, contribute to amplifying renal dysfunction in both the native and transplanted kidney. Overall, several mechanisms are closely related to the onset and progression of CKD in the general population, including changes in renal hemodynamics, neurohumoral pathways, renal adiposity, local and systemic inflammation, dysbiosis of microbiota, insulin resistance, and fibrotic process. Unfortunately, there are no clinical practice guidelines for the management of patients with obesity-related CKD. Therefore, dietary management is based on the clinical practice guidelines for the nutritional care of adults with CKD, developed and published by the National Kidney Foundation, Kidney Disease Outcome Quality Initiative and common recommendations for the healthy population. Optimal nutritional management of these patients should follow the guidelines of the Mediterranean diet, which is known to be associated with a lower incidence of CVD and beneficial effects on chronic diseases such as diabetes, obesity, and cognitive health. Mediterranean-style diets are often unsuccessful in promoting efficient weight loss, especially in patients with altered glucose metabolism. For this purpose, this review also discusses the use of non-classical weight loss approaches in CKD, including intermittent fasting and ketogenic diet to contrast the onset and progression of obesity-related CKD.

4.
Am J Transplant ; 22(9): 2139-2157, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583104

RESUMO

Extracellular vesicles (EV) are emerging mediators in several diseases. However, their role in the pathophysiology of antibody-mediated allograft rejection (AMR) has been poorly investigated. Here, we investigated the role of EV isolated from AMR patients in inducing tubular senescence and endothelial to mesenchymal transition (EndMT) and analyzed their miRNA expression profile. By multiplex bead flow cytometry, we characterized the immunophenotype of plasma AMR-derived EV and found a prevalent platelet and endothelial cell origin. In vitro, AMR-derived EV induced tubular senescence by upregulating SA-ß Gal and CDKN1A mRNA. Furthermore, AMR-derived EV induced EndMT. The occurrence of tubular senescence and EndMT was confirmed by analysis of renal biopsies from the same AMR patients. Moreover, AMR-derived EV induced C3 gene upregulation and CFH downregulation in tubular epithelial cells, with C4d deposition on endothelial cells. Interestingly, RNase-mediated digestion of EV cargo completely abrogated tubular senescence and EndMT. By microarray analysis, miR-604, miR-515-3p, miR-let-7d-5p, and miR-590-3p were significantly upregulated in EV from AMR group compared with transplant controls, whereas miR-24-3p and miR-29a-3p were downregulated. Therefore, EV-associated miRNA could act as active player in AMR pathogenesis, unraveling potential mechanisms of accelerated graft senescence, complement activation and early fibrosis that might lead to new therapeutic intervention.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , RNA Mensageiro/metabolismo
5.
Front Immunol ; 13: 849891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359949

RESUMO

Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Insuficiência Renal Crônica , Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Células Epiteliais/patologia , Vesículas Extracelulares/patologia , Humanos , Insuficiência Renal Crônica/terapia , Células-Tronco
6.
Front Immunol ; 13: 840146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355984

RESUMO

Our immune system actively fights bacteria and viruses, and it must strike a delicate balance between over- and under-reaction, just like Daedalus and Icarus in Greek mythology, who could not escape their imprisonment by flying too high or too low. Both human amniotic epithelial and mesenchymal stromal cells and the conditioned medium generated from their culture exert multiple immunosuppressive activities. They have strong immunomodulatory properties that are influenced by the types and intensity of inflammatory stimuli present in the microenvironment. Notably, very recently, the immunomodulatory activity of human adult renal stem/progenitor cells (ARPCs) has been discovered. ARPCs cause a decrease in Tregs and CD3+ CD4- CD8- (DN) T cells in the early stages of inflammation, encouraging inflammation, and an increase in the late stages of inflammation, favoring inflammation quenching. If the inflammatory trigger continues, however, ARPCs cause a further increase in DN T cells to avoid the development of a harmful inflammatory state. As in the flight of Daedalus and Icarus, who could not fly too high or too low to not destroy their wings by the heat of the sun or the humidity of the sea, in response to an inflammatory environment, stem cells seem to behave by paying attention to regulating T cells in the balance between immune tolerance and autoimmunity. Recognizing the existence of both suppressive and stimulatory properties, and the mechanisms that underpin the duality of immune reaction, will aid in the development of active immunotherapeutic approaches that manipulate the immune system to achieve therapeutic benefit.


Assuntos
Células-Tronco Mesenquimais , Adulto , Animais , Humanos , Imunomodulação , Inflamação , Células-Tronco , Linfócitos T
7.
Artif Organs ; 46(4): 568-577, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35061922

RESUMO

BACKGROUND: Data from large cardiac surgery registries have been depicting a downward trend of mortality and morbidities in the last 20 years. However, despite decades of medical evolution, cardiac surgery and cardiopulmonary bypass still provoke a systemic inflammatory response, which occasionally leads to worsened outcome. This article seeks to outline the mechanism of the phenomenon. METHODS: A thorough review of the literature has been performed. Criteria for considering studies for this non-systematic review were as follows: observational and interventional studies investigating the systemic inflammatory response to cardiac surgery, experimental studies describing relevant molecular mechanisms, and essential review studies pertinent to the topic. RESULTS: The intrinsic variability of the inflammatory response to cardiac surgery, together with its heterogenous perception among clinicians, as well as the arduousness to early discriminate high-responder patients from those who will not develop a clinically relevant reaction, concurred to hitherto unconclusive randomized controlled trials. Furthermore, peremptory knowledge about the pathophysiology of maladaptive inflammation following heart surgery is still lacking. CONCLUSIONS: Systemic inflammation following cardiac surgery is a frequent entity that occasionally becomes clinically relevant. Specific genomic differences, age, and other preoperative factors influence the magnitude of the response, which elements display extreme redundancy and pleiotropism that the target of a single pathway cannot represent a silver bullet.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Humanos , Inflamação/etiologia
8.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572075

RESUMO

For decades, the complement system, the central pillar of innate immune response, was recognized as a protective mechanism against cancer cells and the manipulation of complement effector functions in cancer setting offered a great opportunity to improve monoclonal antibody-based cancer immunotherapies. Similarly, cellular senescence, the process of cell cycle arrest that allow DNA and tissue repair has been traditionally thought to be able to suppress tumor progression. However, in recent years, extensive research has identified the complement system and cellular senescence as two main inducers of tumour growth in the context of chronic, persistent inflammation named inflammaging. Here, we discuss the data describing the ambivalent role of senescence in cancer with a particular focus on tumors that are strongly dependent on complement activation and can be understood by a new, senescence-related point of view: prostate cancer and renal cell carcinoma.


Assuntos
Ativação do Complemento/imunologia , Inflamação , Neoplasias Renais/imunologia , Neoplasias da Próstata/imunologia , Proteína C-Reativa/metabolismo , Senescência Celular/imunologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/patologia , Masculino , Neoplasias da Próstata/patologia , Componente Amiloide P Sérico/metabolismo , Subtilisina/metabolismo
9.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359843

RESUMO

Glomerulonephritis are renal inflammatory processes characterized by increased permeability of the Glomerular Filtration Barrier (GFB) with consequent hematuria and proteinuria. Glomerular endothelial cells (GEC) and podocytes are part of the GFB and contribute to the maintenance of its structural and functional integrity through the release of paracrine mediators. Activation of the complement cascade and pro-inflammatory cytokines (CK) such as Tumor Necrosis Factor α (TNF-α) and Interleukin-6 (IL-6) can alter GFB function, causing acute glomerular injury and progression toward chronic kidney disease. Endothelial Progenitor Cells (EPC) are bone-marrow-derived hematopoietic stem cells circulating in peripheral blood and able to induce angiogenesis and to repair injured endothelium by releasing paracrine mediators including Extracellular Vesicles (EVs), microparticles involved in intercellular communication by transferring proteins, lipids, and genetic material (mRNA, microRNA, lncRNA) to target cells. We have previously demonstrated that EPC-derived EVs activate an angiogenic program in quiescent endothelial cells and renoprotection in different experimental models. The aim of the present study was to evaluate in vitro the protective effect of EPC-derived EVs on GECs and podocytes cultured in detrimental conditions with CKs (TNF-α/IL-6) and the complement protein C5a. EVs were internalized in both GECs and podocytes mainly through a L-selectin-based mechanism. In GECs, EVs enhanced the formation of capillary-like structures and cell migration by modulating gene expression and inducing the release of growth factors such as VEGF-A and HGF. In the presence of CKs, and C5a, EPC-derived EVs protected GECs from apoptosis by decreasing oxidative stress and prevented leukocyte adhesion by inhibiting the expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin). On podocytes, EVs inhibited apoptosis and prevented nephrin shedding induced by CKs and C5a. In a co-culture model of GECs/podocytes that mimicked GFB, EPC-derived EVs protected cell function and permeselectivity from inflammatory-mediated damage. Moreover, RNase pre-treatment of EVs abrogated their protective effects, suggesting the crucial role of RNA transfer from EVs to damaged glomerular cells. In conclusion, EPC-derived EVs preserved GFB integrity from complement- and cytokine-induced damage, suggesting their potential role as therapeutic agents for drug-resistant glomerulonephritis.


Assuntos
Complemento C5a/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Interleucina-6/farmacologia , Podócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/química , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Selectina L/genética , Selectina L/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Comunicação Parácrina/efeitos dos fármacos , Podócitos/citologia , Podócitos/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Transplant Rev (Orlando) ; 35(4): 100629, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118742

RESUMO

Delayed Graft Function (DGF) is one of the most common early complications in kidney transplantation, associated with poor graft outcomes, prolonged post-operative hospitalization and higher rejection rates. Given the severe shortage of high-quality organs for transplantation, DGF incidence is expected to raise in the next years because of the use of nonstandard kidneys from Extended Criteria Donors (ECD) and from Donors after Circulatory Death (DCD). Alongside conventional methods for the evaluation of renal allograft [e.g. serum creatinine Glomerular Filtration Rate (GFR), needle biopsy], recent advancements in omics technologies, including proteomics, metabolomics and transcriptomics, may allow to discover novel biomarkers associated with DGF occurrence, in order to identify early preclinical signs of renal dysfunction and to improve the quality of graft management. Here, we gather contributions from basic scientists and clinical researchers to describe new omics studies in renal transplantation, reporting the emerging biomarkers of DGF that may implement and improve conventional approaches.


Assuntos
Transplante de Rim , Biomarcadores , Função Retardada do Enxerto/epidemiologia , Função Retardada do Enxerto/etiologia , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Humanos , Rim , Transplante de Rim/efeitos adversos , Fatores de Risco , Doadores de Tecidos
11.
Front Pharmacol ; 12: 630419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995028

RESUMO

The biological process of renal aging is characterized by progressive structural and functional deterioration of the kidney leading to end-stage renal disease, requiring renal replacement therapy. Since the discovery of pivotal mechanisms of senescence such as cell cycle arrest, apoptosis inhibition, and the development of a senescence-associated secretory phenotype (SASP), efforts in the understanding of how senescent cells participate in renal physiological and pathological aging have grown exponentially. This has been encouraged by both preclinical studies in animal models with senescent cell clearance or genetic depletion as well as due to evidence coming from the clinical oncologic experience. This review considers the molecular mechanism and pathways that trigger premature renal aging from mitochondrial dysfunction, epigenetic modifications to autophagy, DNA damage repair (DDR), and the involvement of extracellular vesicles. We also discuss the different pharmaceutical approaches to selectively target senescent cells (namely, senolytics) or the development of systemic SASP (called senomorphics) in basic models of CKD and clinical trials. Finally, an overview will be provided on the potential opportunities for their use in renal transplantation during ex vivo machine perfusion to improve the quality of the graft.

12.
Methods Mol Biol ; 2325: 79-95, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34053052

RESUMO

Immunosenescence is the general term used to describe the aging-associated decline of immunological function that explains the higher susceptibility to infectious diseases and cancer, increased autoimmunity, or the reduced effectiveness of vaccinations. Senescence of CD8+ T-cells has been described in all these conditions.The most important classical markers of T senescent cells are the cell cycle inhibitors p16ink4a, p21, and p53, together with positivity for SA-ßgal expression and the acquirement of a peculiar IFNγ -based secretory phenotype commonly defined SASP (Senescence Associated Secretory Phenotype). Other surface markers are the CD28 and CD27 loss together with gain of expression of CD45RA, CD57, TIGIT, and/or KLRG1. However, this characterization could not be sufficient to distinguish from truly senescent cells and exhausted T-cells. Furthermore, more complexity is added by the wide heterogeneity of T-cells subset in aged individuals or in the tumor microenvironment. A combined analysis by multicolor flow cytometry for surface and intracellular markers integrated with gene-expression arrays and single-cell RNA sequencing is required to develop effective interventions for therapeutic modulation of specific T-cell subsets. The RNASeq offers the great possibility to reveal at single-cell resolution the exact molecular hallmarks of senescent CD8+ T-cells without the limitations of bulk analysis. Furthermore, the comprehensive integration of multidimensional approaches (genomics, epigenomics, proteomics, metabolomics) will increase our global understanding of how immunosenescence of T-cells is interlinked to human aging.


Assuntos
Senescência Celular , Citometria de Fluxo/métodos , Imunossenescência , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Senescência Celular/genética , Senescência Celular/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Genômica/métodos , Humanos , Imunossenescência/genética , Imunossenescência/imunologia , Lectinas Tipo C/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Metabolômica/métodos , RNA-Seq , Receptores Imunológicos/metabolismo , Microambiente Tumoral
13.
Aging (Albany NY) ; 13(8): 10920-10933, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33875620

RESUMO

Pentraxins are a family of evolutionarily conserved pattern recognition molecules with pivotal roles in innate immunity and inflammation, such as opsonization of pathogens during bacterial and viral infections. In particular, the long Pentraxin 3 (PTX3) has been shown to regulate several aspects of vascular and tissue inflammation during solid organ transplantation. Our study investigated the role of PTX3 as possible modulator of Complement activation in a swine model of renal ischemia/reperfusion (I/R) injury. We demonstrated that I/R injury induced early PTX3 deposits at peritubular and glomerular capillary levels. Confocal laser scanning microscopy revealed PTX3 deposits co-localizing with CD31+ endothelial cells. In addition, PTX3 was associated with infiltrating macrophages (CD163), dendritic cells (SWC3a) and myofibroblasts (FSP1). In particular, we demonstrated a significant PTX3-mediated activation of classical (C1q-mediated) and lectin (MBL-mediated) pathways of Complement. Interestingly, PTX3 deposits co-localized with activation of the terminal Complement complex (C5b-9) on endothelial cells, indicating that PTX3-mediated Complement activation occurred mainly at the renal vascular level. In conclusion, these data indicate that PTX3 might be a potential therapeutic target to prevent Complement-induced I/R injury.


Assuntos
Injúria Renal Aguda/imunologia , Proteína C-Reativa/metabolismo , Ativação do Complemento , Rim/irrigação sanguínea , Traumatismo por Reperfusão/imunologia , Componente Amiloide P Sérico/metabolismo , Injúria Renal Aguda/patologia , Animais , Biópsia , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/imunologia , Rim/patologia , Traumatismo por Reperfusão/patologia , Sus scrofa
14.
Aging (Albany NY) ; 11(13): 4382-4406, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31284268

RESUMO

Epigenetic mechanisms, such as DNA methylation, affect tubular maladaptive response after Acute Kidney Injury (AKI) and accelerate renal aging. Upon ischemia/reperfusion (I/R) injury, Complement activation leads to C5a release that mediates damage; however, little is known about the effect of C5a-C5a Receptor (C5aR) interaction in Renal Tubular Epithelial Cells (RTEC).Through a whole-genome DNA methylation analysis in cultured RTEC, we found that C5a induced aberrant methylation, particularly in regions involved in cell cycle control, DNA damage and Wnt signaling. The most represented genes were BCL9, CYP1B1 and CDK6. C5a stimulation of RTEC led to up-regulation of SA-ß Gal and cell cycle arrest markers such as p53 and p21. C5a increased also IL-6, MCP-1 and CTGF gene expression, consistent with SASP development. In accordance, in a swine model of renal I/R injury, we found the increased expression of Wnt4 and ßcatenin correlating with SA-ß Gal, p21, p16 and IL-6 positivity. Administration of Complement Inhibitor (C1-Inh), antagonized SASP by reducing SA-ß Gal, p21, p16, IL-6 and abrogating Wnt4/ßcatenin activation.Thus, C5a affects the DNA methylation of genes involved in tubular senescence. Targeting epigenetic programs and Complement may offer novels strategies to protect tubular cells from accelerated aging and to counteract progression to Chronic Kidney Disease.


Assuntos
Injúria Renal Aguda/metabolismo , Complemento C5a/fisiologia , Metilação de DNA , Túbulos Renais/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/etiologia , Células Cultivadas , Senescência Celular , Quinase 6 Dependente de Ciclina/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Epigênese Genética , Células Epiteliais/metabolismo , Humanos , Traumatismo por Reperfusão/etiologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
15.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357597

RESUMO

During sepsis, the increased synthesis of circulating lipopolysaccharide (LPS)-binding protein (LBP) activates LPS/TLR4 signaling in renal resident cells, leading to acute kidney injury (AKI). Pericytes are the major source of myofibroblasts during chronic kidney disease (CKD), but their involvement in AKI is poorly understood. Here, we investigate the occurrence of pericyte-to-myofibroblast trans-differentiation (PMT) in sepsis-induced AKI. In a swine model of sepsis-induced AKI, PMT was detected within 9 h from LPS injection, as evaluated by the reduction of physiologic PDGFRß expression and the dysfunctional α-SMA increase in peritubular pericytes. The therapeutic intervention by citrate-based coupled plasma filtration adsorption (CPFA) significantly reduced LBP, TGF-ß, and endothelin-1 (ET-1) serum levels, and furthermore preserved PDGFRß and decreased α-SMA expression in renal biopsies. In vitro, both LPS and septic sera led to PMT with a significant increase in Collagen I synthesis and α-SMA reorganization in contractile fibers by both SMAD2/3-dependent and -independent TGF-ß signaling. Interestingly, the removal of LBP from septic plasma inhibited PMT. Finally, LPS-stimulated pericytes secreted LBP and TGF-ß and underwent PMT also upon TGF-ß receptor-blocking, indicating the crucial pro-fibrotic role of TLR4 signaling. Our data demonstrate that the selective removal of LBP may represent a therapeutic option to prevent PMT and the development of acute renal fibrosis in sepsis-induced AKI.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Transdiferenciação Celular , Glicoproteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Pericitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/patologia , Animais , Biópsia , Transdiferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Endotoxinas/efeitos adversos , Fibrose , Imuno-Histoquímica , Modelos Biológicos , Miofibroblastos/citologia , Suínos
16.
Sci Rep ; 7(1): 8225, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811645

RESUMO

Acute kidney injury (AKI) is a public health problem worldwide. Several therapeutic strategies have been made to accelerate recovery and improve renal survival. Recent studies have shown that human adult renal progenitor cells (ARPCs) participate in kidney repair processes, and may be used as a possible treatment to promote regeneration in acute kidney injury. Here, we show that human tubular ARPCs (tARPCs) protect physically injured or chemically damaged renal proximal tubular epithelial cells (RPTECs) by preventing cisplatin-induced apoptosis and enhancing proliferation of survived cells. tARPCs without toll-like receptor 2 (TLR2) expression or TLR2 blocking completely abrogated this regenerative effect. Only tARPCs, and not glomerular ARPCs, were able to induce tubular cell regeneration process and it occurred only after damage detection. Moreover, we have found that ARPCs secreted inhibin-A and decorin following the RPTEC damage and that these secreted factors were directly involved in cell regeneration process. Polysaccharide synthetic vesicles containing these molecules were constructed and co-cultured with cisplatin damaged RPTECs. These synthetic vesicles were not only incorporated into the cells, but they were also able to induce a substantial increase in cell number and viability. The findings of this study increase the knowledge of renal repair processes and may be the first step in the development of new specific therapeutic strategies for renal repair.


Assuntos
Células-Tronco Adultas/metabolismo , Decorina/biossíntese , Células Epiteliais/metabolismo , Inibinas/biossíntese , Túbulos Renais/metabolismo , Regeneração , Receptor 2 Toll-Like/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Biomarcadores , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cisplatino/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos
17.
Nephrol Dial Transplant ; 29(4): 799-808, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463188

RESUMO

BACKGROUND: Increasing evidence demonstrates a phenotypic plasticity of endothelial cells (ECs). Endothelial-to-mesenchymal transition (EndMT) contributes to the development of tissue fibrosis. However, the pathogenic factors and signalling pathways regulating this process in ischaemia/reperfusion (I/R) injury are still poorly understood. METHODS: We investigated the possible role of complement in the induction of this endothelial dysfunction in a swine model of renal I/R injury by using recombinant C1 inhibitor in vivo. RESULTS: Here, we showed that I/R injury reduced the density of renal peritubular capillaries and induced tissue fibrosis with generation of CD31(+)/α-SMA(+) and CD31(+)/FPS-1(+) cells indicating EndMT. When we inhibited complement, the process of EndMT became rare, with preserved density of peritubular capillaries and significant reduction in renal fibrosis. When we activated ECs by anaphylatoxins in vitro, C3a and C5a led to altered endothelial phenotype with increased expression of fibroblast markers and decrease expression of specific endothelial markers. The activation of Akt pathway was pivotal for the C3a and C5a-induced EndMT in vitro. In accordance, inhibition of complement in vivo led to the abrogation of Akt signalling, with hampered EndMT and tissue fibrosis. CONCLUSIONS: Our data demonstrate a critical role for complement in the acute induction of EndMT via the Akt pathway. Therapeutic inhibition of these systems may be essential to prevent vascular damage and tissue fibrosis in transplanted kidney.


Assuntos
Anafilatoxinas/metabolismo , Células Endoteliais/metabolismo , Nefropatias/patologia , Rim/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/complicações , Fibrose/metabolismo , Fibrose/patologia , Humanos , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA