Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 269, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191550

RESUMO

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/genética , Diferenciação Celular , Neoplasias Cerebelares/genética , Progressão da Doença , Técnicas Histológicas
2.
Cancer Cell ; 39(3): 407-422.e13, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33545065

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.


Assuntos
Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/parasitologia , Glioma/genética , Glioma/patologia , Histonas/genética , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/patologia , Animais , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
3.
Genes Dev ; 34(17-18): 1161-1176, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820036

RESUMO

Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10 ) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/- ;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/- ;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Receptor Patched-1/genética , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
4.
Neuro Oncol ; 21(7): 867-877, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-30943283

RESUMO

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive pediatric brain tumors that are characterized by a recurrent mutation (K27M) within the histone H3 encoding genes H3F3A and HIST1H3A/B/C. These mutations have been shown to induce a global reduction in the repressive histone modification H3K27me3, which together with widespread changes in DNA methylation patterns results in an extensive transcriptional reprogramming hampering the identification of single therapeutic targets based on a molecular rationale. METHODS: We applied a large-scale gene knockdown approach using a pooled short hairpin (sh)RNA library in combination with next-generation sequencing in order to identify DIPG-specific vulnerabilities. The therapeutic potential of specific inhibitors of candidate targets was validated in a secondary drug screen. RESULTS: We identified fibroblast growth factor receptor (FGFR) signaling and the serine/threonine protein phosphatase 2A (PP2A) as top depleted hits in patient-derived DIPG cell cultures and validated their lethal potential by FGF ligand depletion and genetic knockdown of the PP2A structural subunit PPP2R1A. Further, pharmacological inhibition of FGFR and PP2A signaling through ponatinib and LB-100 treatment, respectively, exhibited strong tumor-specific anti-proliferative and apoptotic activity in cultured DIPG cells. CONCLUSIONS: Our findings suggest FGFR and PP2A signaling as potential new therapeutic targets for the treatment of DIPGs.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , RNA Interferente Pequeno/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Apoptose , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/patologia , Proliferação de Células , Metilação de DNA , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Humanos , Proteína Fosfatase 2/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA