Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19921, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620912

RESUMO

Fluorescently labeled antibody and aptamer probes are used in biological studies to characterize binding interactions, measure concentrations of analytes, and sort cells. Fluorescent nanoparticle labels offer an excellent alternative to standard fluorescent labeling strategies due to their enhanced brightness, stability and multivalency; however, challenges in functionalization and characterization have impeded their use. This work introduces a straightforward approach for preparation of fluorescent nanoparticle probes using commercially available reagents and common laboratory equipment. Fluorescent polystyrene nanoparticles, Thermo Fisher Scientific FluoSpheres, were used in these proof-of-principle studies. Particle passivation was achieved by covalent attachment of amine-PEG-azide to carboxylated particles, neutralizing the surface charge from - 43 to - 15 mV. A conjugation-annealing handle and DNA aptamer probe were attached to the azide-PEG nanoparticle surface either through reaction of pre-annealed handle and probe or through a stepwise reaction of the nanoparticles with the handle followed by aptamer annealing. Nanoparticles functionalized with DNA aptamers targeting histidine tags and VEGF protein had high affinity (EC50s ranging from 3 to 12 nM) and specificity, and were more stable than conventional labels. This protocol for preparation of nanoparticle probes relies solely on commercially available reagents and common equipment, breaking down the barriers to use nanoparticles in biological experiments.


Assuntos
Técnicas Biossensoriais , Sondas de DNA/química , Corantes Fluorescentes/química , Nanopartículas/química , Peptídeos/análise , Proteínas/análise , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Humanos , Nanotecnologia , Polietilenoglicóis , Pontos Quânticos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA