Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 6(5): 131-142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706754

RESUMO

The leading cause of death among patients with metabolic dysfunction-associated steatotic liver disease (MASLD) is cardiovascular disease. A significant percentage of MASLD patients develop heart failure driven by functional and structural alterations in the heart. Previously, we observed cardiac dysfunction in hepatocyte-specific peroxisome proliferator-activated receptor alpha knockout (Ppara HepKO), a mouse model that exhibits hepatic steatosis independent of obesity and insulin resistance. The goal of the present study was to determine mechanisms that underlie hepatic steatosis-induced cardiac dysfunction in Ppara HepKO mice. Experiments were performed in 30-week-old Ppara HepKO and littermate control mice fed regular chow. We observed decreased cardiomyocyte contractility (0.17 ± 0.02 vs. 0.24 ± 0.02 µm, p < 0.05), increased cardiac triglyceride content (0.96 ± 0.13 vs. 0.68 ± 0.06 mM, p < 0.05), collagen type 1 (4.65 ± 0.25 vs. 0.31 ± 0.01 AU, p < 0.001), and collagen type 3 deposition (1.32 ± 0.46 vs. 0.05 ± 0.03 AU, p < 0.05). These changes were associated with increased apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining (30.9 ± 4.7 vs. 13.1 ± 0.8%, p < 0.006) and western blots showing increased cleaved caspase-3 (0.27 ± 0.006 vs. 0.08 ± 0.01 AU, p < 0.003) and pro-caspase-3 (5.4 ± 1.5 vs. 0.5 ± 0.3 AU, p < 0.02), B-cell lymphoma protein 2-associated X (0.68 ± 0.07 vs. 0.04 ± 0.04 AU, p < 0.001), and reduced B-cell lymphoma protein 2 (0.29 ± 0.01 vs. 1.47 ± 0.54 AU, p < 0.05). We further observed elevated circulating natriuretic peptides and exercise intolerance in Ppara HepKO mice when compared to controls. Our data demonstrated that lipotoxicity, and fibrosis underlie cardiac dysfunction in MASLD.

2.
Cells ; 11(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011564

RESUMO

The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for ß-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Polaridade Celular , Inflamação/patologia , Lipogênese , Macrófagos/patologia , PPAR alfa/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Adipócitos/metabolismo , Adiposidade , Aminoácidos/sangue , Animais , Biomarcadores/metabolismo , Peso Corporal , Colesterol/sangue , Dieta Hiperlipídica , Feminino , Inflamação/sangue , Lipidômica , Macrófagos/metabolismo , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão , Especificidade de Órgãos , PPAR alfa/metabolismo , Transdução de Sinais
3.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327438

RESUMO

Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.


Assuntos
Hepatopatia Gordurosa não Alcoólica/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Bilirrubina/metabolismo , Produtos Biológicos/metabolismo , Curcumina/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Food Biochem ; 44(12): e13522, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047319

RESUMO

Milk thistle cold press oil (MTO) is an herbal remedy derived from Silybum marianum which contains a low level of silymarin and mixture of polyphenols and flavonoids. The effect of MTO on the cardiovascular and metabolic complications of obesity was studied in mice that were fed a high-fat diet (HFD) for 20 weeks and treated with MTO for the final 8 weeks of the diet. MTO treatment attenuated HFD-induced obesity, fasting hyperglycemia, hypertension, and induced markers of mitochondrial fusion and browning of white adipose. Markers of inflammation were also attenuated in both adipose and the liver of MTO-treated mice. In addition, MTO resulted in the improvement of liver fibrosis. These results demonstrate that MTO has beneficial actions to attenuate dietary obesity-induced weight gain, hyperglycemia, hypertension, inflammation, and suggest that MTO supplementation may prove beneficial to patients exhibiting symptoms of metabolic syndrome. PRACTICAL APPLICATIONS: Natural supplements are increasingly being considered as potential therapies for many chronic cardiovascular and metabolic diseases. Milk thistle cold press oil (MTO) is derived from Silybum marianum which is used as a dietary supplement in different parts of the world. The results of the present study demonstrate that MTO supplementation normalizes several metabolic and cardiovascular complications arising from dietary-induced obesity. MTO supplementation also had anti-inflammatory actions in the adipose as well as the liver. These results suggest that supplementation of MTO into the diet of obese individuals may afford protection against the worsening of cardiovascular and metabolic disease and improve inflammation and liver fibrosis.


Assuntos
Síndrome Metabólica , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Camundongos , Silybum marianum , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Sementes
5.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751794

RESUMO

AIM: Obesity is associated with metabolic syndrome, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. In this study, we investigated whether the dietary supplementation of pomegranate seed oil (PSO) exerted a protective effect on liver lipid uptake, fibrosis, and mitochondrial function in a mouse model of obesity and insulin resistance. METHOD: In this in vivo study, eight-week-old C57BL/6J male mice were fed with a high fat diet (HFD) for 24 weeks and then were divided into three groups as follows: group (1) Lean; group (n = 6) (2) HF diet; group (n = 6) (3) HF diet treated with PSO (40 mL/kg food) (n = 6) for eight additional weeks starting at 24 weeks. Physiological parameters, lipid droplet accumulation, inflammatory biomarkers, antioxidant biomarkers, mitochondrial biogenesis, insulin sensitivity, and hepatic fibrosis were determined to examine whether PSO intervention prevents obesity-associated metabolic syndrome. RESULTS: The PSO group displayed an increase in oxygen consumption, as well as a decrease in fasting glucose and blood pressure (p < 0.05) when compared to the HFD-fed mice group. PSO increased both the activity and expression of hepatic HO-1, downregulated inflammatory adipokines, and decreased hepatic fibrosis. PSO increased the levels of thermogenic genes, mitochondrial signaling, and lipid metabolism through increases in Mfn2, OPA-1, PRDM 16, and PGC1α. Furthermore, PSO upregulated obesity-mediated hepatic insulin receptor phosphorylation Tyr-972, p-IRB tyr1146, and pAMPK, thereby decreasing insulin resistance. CONCLUSIONS: These results indicated that PSO decreased obesity-mediated insulin resistance and the progression of hepatic fibrosis through an improved liver signaling, as manifested by increased insulin receptor phosphorylation and thermogenic genes. Furthermore, our findings indicate a potential therapeutic role for PSO in the prevention of obesity-associated NAFLD, NASH, and other metabolic disorders.


Assuntos
Antioxidantes/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Óleos de Plantas/uso terapêutico , Animais , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/patologia , Punica granatum/química , Sementes/química
6.
Antioxidants (Basel) ; 9(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512788

RESUMO

Excessive lipid accumulation in white adipose tissue (WAT) results in adipocyte hypertrophy and chronic low-grade inflammation, which is the major cause of obesity-associated insulin resistance and consequent metabolic disease. The development of beige adipocytes in WAT (browning of WAT) increases energy expenditure and has been considered as a novel strategy to counteract obesity. Thymoquinone (TQ) is the main bioactive quinone derived from the plant Nigella Sativa and has antioxidative and anti-inflammatory capacities. Fish oil omega 3 (ω3) enhances both insulin sensitivity and glucose homeostasis in obesity, but the involved mechanisms remain unclear. The aim of this study is to explore the effects of TQ and ω3 PUFAs (polyunsaturated fatty acids) on obesity-associated inflammation, markers of insulin resistance, and the metabolic effects of adipose tissue browning. 3T3-L1 cells were cultured to investigate the effects of TQ and ω3 on the browning of WAT. C57BL/6J mice were fed a high-fat diet (HFD), supplemented with 0.75% TQ, and 2% ω3 in combination for eight weeks. In 3T3-L1 cells, TQ and ω3 reduced lipid droplet size and increased hallmarks of beige adipocytes such as uncoupling protein-1 (UCP1), PR domain containing 16 (PRDM16), fibroblast growth factor 21 (FGF21), Sirtuin 1 (Sirt1), Mitofusion 2 (Mfn2), and heme oxygenase 1 (HO-1) protein expression, as well as increased the phosphorylation of Protein Kinase B (AKT) and insulin receptors. In the adipose tissue of HFD mice, TQ and ω3 treatment attenuated levels of inflammatory adipokines, Nephroblastoma Overexpressed (NOV/CCN3) and Twist related protein 2 (TWIST2), and diminished adipocyte hypoxia by decreasing HIF1α expression and hallmarks of beige adipocytes such as UCP1, PRDM16, FGF21, and mitochondrial biogenesis markers Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), Sirt1, and Mfn2. Increased 5' adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation and HO-1 expression were observed in adipose with TQ and ω3 treatment, which led to increased pAKT and pIRS1 Ser307 expression. In addition to the adipose, TQ and ω3 also increased inflammation and markers of insulin sensitivity in the liver, as demonstrated by increased phosphorylated insulin receptor (pIR tyr972), insulin receptor beta (IRß), UCP1, and pIRS1 Ser307 and reduced NOV/CCN3 expression. Our data demonstrate the enhanced browning of WAT from TQ treatment in combination with ω3, which may play an important role in decreasing obesity-associated insulin resistance and in reducing the chronic inflammatory state of obesity.

7.
Physiol Genomics ; 51(6): 234-240, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074682

RESUMO

Bilirubin is a potent antioxidant that reduces inflammation and the accumulation of fat. There have been reports of gene responses to bilirubin, which was mostly attributed to its antioxidant function. Using RNA sequencing, we found that biliverdin, which is rapidly reduced to bilirubin, induced transcriptome responses in human HepG2 hepatocytes in a peroxisome proliferator-activated receptor (PPAR)-α-dependent fashion (398 genes with >2-fold change; false discovery rate P < 0.05). For comparison, a much narrower set of genes demonstrated differential expression when PPAR-α was suppressed via lentiviral shRNA knockdown (23 genes). Gene set enrichment analysis revealed the bilirubin-PPAR-α transcriptome mediates pathways for oxidation-reduction processes, mitochondrial function, response to nutrients, fatty acid oxidation, and lipid homeostasis. Together, these findings suggest that transcriptome responses from the generation of bilirubin are mostly PPAR-α dependent, and its antioxidant function regulates a smaller set of genes.


Assuntos
Bilirrubina/genética , Hepatócitos/metabolismo , PPAR alfa/genética , Transcriptoma/genética , Antioxidantes/metabolismo , Células Hep G2 , Homeostase/genética , Humanos , Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Oxirredução , Análise de Sequência de RNA/métodos
8.
J Immunol ; 202(10): 2982-2990, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952817

RESUMO

Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.


Assuntos
Quimiocinas/imunologia , Quimiotaxia/imunologia , Complemento C5a/imunologia , Macrófagos/imunologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/imunologia , Receptor da Anafilatoxina C5a/imunologia , Transdução de Sinais/imunologia , Animais , Quimiocinas/genética , Quimiotaxia/genética , Complemento C5a/genética , Deleção de Genes , Macrófagos/citologia , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais/genética
9.
Am J Physiol Renal Physiol ; 315(2): F323-F331, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631357

RESUMO

Obesity and increased lipid availability have been implicated in the development and progression of chronic kidney disease. One of the major sites of renal lipid accumulation is in the proximal tubule cells of the kidney, suggesting that these cells may be susceptible to lipotoxicity. We previously demonstrated that loss of hepatic biliverdin reductase A (BVRA) causes fat accumulation in livers of mice on a high-fat diet. To determine the role of BVRA in mouse proximal tubule cells, we generated a CRISPR targeting BVRA for a knockout in mouse proximal tubule cells (BVRA KO). The BVRA KO cells had significantly less metabolic potential and mitochondrial respiration, which was exacerbated by treatment with palmitic acid, a saturated fatty acid. The BVRA KO cells also showed increased intracellular triglycerides which were associated with higher fatty acid uptake gene cluster of differentiation 36 as well as increased de novo lipogenesis as measured by higher neutral lipids. Additionally, neutrophil gelatinase-associated lipocalin 1 expression, annexin-V FITC staining, and lactate dehydrogenase assays all demonstrated that BVRA KO cells are more sensitive to palmitic acid-induced lipotoxicity than wild-type cells. Phosphorylation of BAD which plays a role in cell survival pathways, was significantly reduced in palmitic acid-treated BVRA KO cells. These data demonstrate the protective role of BVRA in proximal tubule cells against saturated fatty acid-induced lipotoxicity and suggest that activating BVRA could provide a benefit in protecting from obesity-induced kidney injury.


Assuntos
Apoptose/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Ácido Palmítico/toxicidade , Animais , Antígenos CD36/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Deleção de Genes , Edição de Genes/métodos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , L-Lactato Desidrogenase/metabolismo , Lipocalina-2/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Ácido Palmítico/metabolismo , Fosforilação , Triglicerídeos/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 314(6): G668-G676, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494209

RESUMO

The buildup of fat in the liver (hepatic steatosis) is the first step in a series of incidents that may drive hepatic disease. Obesity is the leading cause of nonalcoholic fatty liver disease (NAFLD), in which hepatic steatosis progresses to liver disease. Chronic alcohol exposure also induces fat accumulation in the liver and shares numerous similarities to obesity-induced NAFLD. Regardless of whether hepatic steatosis is due to obesity or long-term alcohol use, it still may lead to hepatic fibrosis, cirrhosis, or possibly hepatocellular carcinoma. The antioxidant bilirubin and the enzyme that generates it, biliverdin reductase A (BVRA), are components of the heme catabolic pathway that have been shown to reduce hepatic steatosis. This review discusses the roles for bilirubin and BVRA in the prevention of steatosis, their functions in the later stages of liver disease, and their potential therapeutic application.


Assuntos
Bilirrubina , Fígado Gorduroso/metabolismo , Cirrose Hepática/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Bilirrubina/metabolismo , Bilirrubina/farmacologia , Progressão da Doença , Fígado Gorduroso/etiologia , Humanos , Cirrose Hepática/prevenção & controle , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/farmacologia , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia
11.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R427-R432, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212810

RESUMO

Preeclampsia is a pregnancy-specific disorder of maternal hypertension and reduced renal hemodynamics linked to reduced endothelial function. Placental ischemia is thought to be the culprit of this disease, as it causes the release of factors like tumor necrosis factor (TNF)-α that induce vascular endothelin-1 (ET-1) production. Interestingly, placental ischemia-induced hypertension in rats [reduced uterine perfusion pressure (RUPP) model] is abolished by ETA receptor blockade, suggesting a critical role for ET-1. Although it has been found that systemic induction of heme oxygenase (HO)-1 is associated with reduced ET-1 production and attenuated hypertension, it is unclear whether HO-1 directly modulates the increased ET-1 response to placental factors. We tested the hypothesis that HO-1 or its metabolites inhibit ET-1 production in human glomerular endothelial cells induced by serum of RUPP rats or TNF-α. Serum (5%) from RUPP hypertensive (mean arterial blood pressure 119 ± 9 mmHg) vs. normotensive pregnant (NP, 101 ± 6 mmHg, P < 0.001) rats increased ET-1 production (RUPP 168.8 ± 18.1 pg/ml, NP 80.3 ± 22.7 pg/ml, P < 0.001, n = 12/group). HO-1 induction [25 µM cobalt photoporphyrin (CoPP)] abolished RUPP serum-induced ET-1 production (1.6 ± 0.8 pg/ml, P < 0.001), whereas bilirubin (10 µM) significantly attenuated ET-1 release (125.3 ± 5.2 pg/ml, P = 0.005). Furthermore, TNF-α-induced ET-1 production (TNF-α 31.0 ± 8.4 vs. untreated 7.5 ± 0.4 pg/ml, P < 0.001) was reduced by CoPP (1.5 ± 0.8 pg/ml, P < 0.001) and bilirubin (10.5 ± 4.3 pg/ml, P < 0.001). These results suggest that circulating factors released during placental ischemia target the maternal glomerular endothelium to increase ET-1, and that pharmacological induction of HO-1 or bilirubin could be a treatment strategy to block this prohypertensive pathway in preeclampsia.


Assuntos
Células Endoteliais/enzimologia , Endotelina-1/metabolismo , Heme Oxigenase-1/metabolismo , Isquemia/enzimologia , Glomérulos Renais/enzimologia , Placenta/irrigação sanguínea , Circulação Placentária , Pré-Eclâmpsia/enzimologia , Animais , Pressão Arterial , Bilirrubina/farmacologia , Biliverdina/farmacologia , Boranos/farmacologia , Carbonatos/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Indução Enzimática , Feminino , Isquemia/sangue , Isquemia/fisiopatologia , Glomérulos Renais/efeitos dos fármacos , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/fisiopatologia , Gravidez , Protoporfirinas/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia
12.
Am J Hypertens ; 30(9): 931-937, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472389

RESUMO

BACKGROUND: Preeclampsia is a pregnancy complication which manifests as new-onset hypertension, proteinuria, and a spectrum of other symptoms. While the underlying causes are still a subject of much debate, it is commonly believed that placental ischemia is a central cause. The ischemic placenta secretes factors which are believed to be responsible for the maternal syndrome; most notably the anti-angiogenic protein soluble fms-like tyrosine kinase 1 (sFlt-1). We have reported that induction of the carbon monoxide (CO) producing protein heme oxygenase-1 restored angiogenic imbalance and reduced blood pressure in a rat model of placental ischemia, and that CO blocks hypoxia-induced sFlt-1 production from placental tissue in vitro. We therefore hypothesized that direct administration of CO by a CO-releasing molecule (CORM) would blunt the placental ischemia-induced increase in sFlt-1 and thus the hypertension characteristic of this model. METHODS: We administered a soluble CO donor molecule (CORM-3) daily i.v. in control animals or those undergoing placental ischemia from GD14. Blood pressure and renal function were measured on GD19, and angiogenic markers measured by ELISA. RESULTS: Interestingly, though we found that CORM administration significantly blunted the hypertensive response to placental ischemia, there was no concomitant normalization of sFlt-1 in either the placenta or maternal circulation. We did find, however, that CORM administration caused a significant increase in glomerular filtration rate, presumably by vasodilation of the renal arteries and increased renal plasma flow. CONCLUSIONS: All in all these data suggest that administration of CO by CORMs do lower blood pressure during placental ischemia mechanisms independent of changes in angiogenic balance.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Isquemia/tratamento farmacológico , Rim/irrigação sanguínea , Compostos Organometálicos/farmacologia , Placenta/irrigação sanguínea , Pré-Eclâmpsia/prevenção & controle , Animais , Anti-Hipertensivos/metabolismo , Modelos Animais de Doenças , Feminino , Idade Gestacional , Taxa de Filtração Glomerular/efeitos dos fármacos , Isquemia/sangue , Isquemia/complicações , Isquemia/fisiopatologia , Compostos Organometálicos/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Artéria Renal/efeitos dos fármacos , Artéria Renal/fisiopatologia , Fluxo Plasmático Renal/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Vasodilatação/efeitos dos fármacos
13.
J Biol Chem ; 291(50): 25776-25788, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27784782

RESUMO

Glucocorticoids (GCs) regulate energy supply in response to stress by increasing hepatic gluconeogenesis during fasting. Long-term GC treatment induces hepatic steatosis and weight gain. GC signaling is coordinated via the GC receptor (GR) GRα, as the GRß isoform lacks a ligand-binding domain. The roles of the GR isoforms in the regulation of lipid accumulation is unknown. The purpose of this study was to determine whether GRß inhibits the actions of GCs in the liver, or enhances hepatic lipid accumulation. We show that GRß expression is increased in adipose and liver tissues in obese high-fat fed mice. Adenovirus-mediated delivery of hepatic GRß overexpression (GRß-Ad) resulted in suppression of gluconeogenic genes and hyperglycemia in mice on a regular diet. Furthermore, GRß-Ad mice had increased hepatic lipid accumulation and serum triglyceride levels possibly due to the activation of NF-κB signaling and increased tumor necrosis factor α (TNFα) and inducible nitric-oxide synthase expression, indicative of enhanced M1 macrophages and the development of steatosis. Consequently, GRß-Ad mice had increased glycogen synthase kinase 3ß (GSK3ß) activity and reduced hepatic PPARα and fibroblast growth factor 21 (FGF21) expression and lower serum FGF21 levels, which are two proteins known to increase during fasting to enhance the burning of fat by activating the ß-oxidation pathway. In conclusion, GRß antagonizes the GC-induced signaling during fasting via GRα and the PPARα-FGF21 axis that reduces fat burning. Furthermore, hepatic GRß increases inflammation, which leads to hepatic lipid accumulation.


Assuntos
Fígado Gorduroso/metabolismo , Glucocorticoides/farmacologia , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR alfa/genética , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R960-7, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936780

RESUMO

Obesity is a risk factor for cardiovascular disease and is associated with increased plasma levels of the adipose-derived hormone leptin. Vascular smooth muscle cells (VSMC) express leptin receptors (LepR); however, their physiological role is unclear. We hypothesized that leptin, at levels to mimic morbid obesity, impairs vascular relaxation. To test this, we used control and VSM-LepR knockout mice (VSM-LepR KO) created with a tamoxifen-inducible specific Cre recombinase to delete the LepR gene in VSMC. Control (10-12 wk old) and VSM-LepR KO (10-12 wk old) mice were fed a diet containing tamoxifen (50 mg/kg) for 6 wk, after which vascular reactivity was studied in isolated carotid arteries using an organ chamber bath. Vessels were incubated with leptin (100 ng/ml) or vehicle (0.1 mM Tris·HCl) for 30 min. Leptin treatment resulted in significant impairment of vessel relaxation to the endothelial-specific agonist acetylcholine (ACh). When these experiments were repeated in the presence of the superoxide scavenger tempol, relaxation responses to ACh were restored. VSM-LepR deletion resulted in a significant attenuation of leptin-mediated impaired ACh-induced relaxation. These data show that leptin directly impairs vascular relaxation via a VSM-LepR-mediated mechanism, suggesting a potential pathogenic role for leptin to increase cardiovascular risk during obesity.


Assuntos
Deleção de Genes , Leptina/farmacologia , Músculo Liso Vascular/metabolismo , Receptores para Leptina/metabolismo , Vasodilatação/fisiologia , Animais , Antagonistas de Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Receptores para Leptina/genética , Tamoxifeno/farmacologia
15.
Front Pharmacol ; 6: 165, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347650

RESUMO

Pre-eclampsia is a hypertensive disorder of pregnancy initiated by placental insufficiency and chronic ischemia. In response, several pathways activated in the placenta are responsible for the maternal syndrome, including increased production of the anti-angiogenic protein, sFlt-1, and inflammatory cytokines, especially tumor necrosis factor-alpha (TNF-α). Previous studies have demonstrated that heme oxygenase (HO) induction can block TNF-α pathways in vitro and attenuate placental ischemia-induced sFlt-1 in vivo. Here, we investigated whether HO-1 induction could attenuate TNF-α-induced hypertension in pregnant rats. In response to TNF-α infusion (100 ng/day i.p.), maternal mean arterial pressure (MAP) increased vs. control animals (104 ± 3 vs. 119 ± 3 mmHg). HO-1 induction had no effect in control animals, but significantly decreased MAP in TNF-α-infused animals (108 ± 2 mmHg). Placental vascular endothelial growth factor (VEGF) was decreased in response to TNF-α infusion (92 ± 4 vs. 76 ± 2 pg/mg). Placental sFlt-1 was increased by TNF-α infusion (758 ± 45 vs. 936 ± 46 pg/mg, p < 0.05), which trended to normalization by HO-1 induction (779 ± 98 pg/mg). In contrast, HO-1 induction had no significant effect on placental VEGF in TNF-α-infused animals. Taken together, these data suggest that one of the key mechanisms by which HO exerts cytoprotective actions in the placenta during inflammation due to chronic ischemia is through suppression of sFlt-1. Further work elucidating the bioactive metabolites of HO-1 in innate inflammatory responses to placental ischemia is warranted.

16.
Am J Physiol Regul Integr Comp Physiol ; 306(9): R641-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553299

RESUMO

Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, ß-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of ß-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether ß-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, ß-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast ß-ENaC expression by 1.5- and 1.8-fold (10 and 50 µM). We then showed that silencing of ß-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 µM). Taken together, our results suggest that ß-ENaC mediates cytotrophoblast migration and increasing ß-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast ß-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.


Assuntos
Movimento Celular , Canais Epiteliais de Sódio/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Isquemia/enzimologia , Placenta/irrigação sanguínea , Placenta/enzimologia , Trofoblastos/enzimologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Indução Enzimática , Canais Epiteliais de Sódio/genética , Feminino , Heme Oxigenase (Desciclizante)/biossíntese , Heme Oxigenase-1/biossíntese , Humanos , Isquemia/fisiopatologia , Circulação Placentária , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção
17.
Am J Physiol Regul Integr Comp Physiol ; 303(12): R1241-50, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23115124

RESUMO

Although disruption of leptin signaling is associated with obesity as well as cardiac lipid accumulation and dysfunction, it has been difficult to separate the direct effects of leptin on the heart from those associated with the effects of leptin on body weight and fat mass. Using Cre-loxP recombinase technology, we developed tamoxifen-inducible, cardiomyocyte-specific leptin receptor-deficient mice to assess the role of leptin in regulating cardiac function. Cre recombinase activation in the heart resulted in transient reduction in left ventricular systolic function which recovered to normal levels by day 10. However, when cardiomyocyte leptin receptors were deleted in the setting of Cre recombinase-induced left ventricular dysfunction, irreversible lethal heart failure was observed in less than 10 days in all mice. Heart failure after leptin receptor deletion was associated with marked decreases of cardiac mitochondrial ATP, phosphorylated mammalian target of rapamycin (mTOR), and AMP-activated kinase (pAMPK). Our results demonstrate that specific deletion of cardiomyocyte leptin receptors, in the presence of increased Cre recombinase expression, causes lethal heart failure associated with decreased cardiac energy production. These observations indicate that leptin plays an important role in regulating cardiac function in the setting of cardiac stress caused by Cre-recombinase expression, likely through actions on cardiomyocyte energy metabolism.


Assuntos
Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Integrases/metabolismo , Miócitos Cardíacos/metabolismo , Receptores para Leptina/deficiência , Disfunção Ventricular Esquerda/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Feminino , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Proteínas Quinases/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Transdução de Sinais/fisiologia , Sístole/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
18.
Am J Physiol Regul Integr Comp Physiol ; 301(5): R1495-500, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865547

RESUMO

Preeclampsia (PE) is one of the leading causes of fetal and maternal morbidity, affecting 5-10% of all pregnancies, and lacks an effective treatment. The exact etiology of the disorder is unclear, but placental ischemia has been shown to be a central causative agent. In response to placental ischemia, the antiangiogenic protein fms-like tyrosine kinase-1 (sFlt-1), a VEGF antagonist, and reactive oxygen species are secreted, leading to the maternal syndrome. One promising therapeutic approach to treat PE is through manipulation of the heme oxygenase-1 (HO-1) protein. It has been previously reported that HO-1 and carbon monoxide downregulate sFlt-1 production in vitro, and we have recently shown that HO-1 induction significantly attenuates placental ischemia-induced hypertension, partially through normalization of the sFlt-1-to-VEGF ratio in the placenta. The purpose of this study was to determine whether HO-1 induction would have beneficial effects independently of sFlt-1 suppression. To that end, pregnant rats were continuously infused with recombinant sFlt-1 from gestational days 14-19, and circulating sFlt-1 increased approximately twofold, similar to rats with experimentally induced placental ischemia. In response, mean arterial pressure increased 17 mmHg, which was completely normalized by HO-1 induction. Unbound circulating VEGF was decreased ∼17% in response to sFlt-1 infusion but was increased ∼50% in response to HO-1 induction. Finally, endothelial function was improved as measured by reductions in vascular expression of preproendothelin mRNA. In conclusion, manipulation of HO-1 presents an intriguing therapeutic approach to the treatment of PE.


Assuntos
Anti-Hipertensivos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Placenta/efeitos dos fármacos , Pré-Eclâmpsia/prevenção & controle , Protoporfirinas/administração & dosagem , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Modelos Animais de Doenças , Esquema de Medicação , Endotelina-1/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Indução Enzimática , Feminino , Idade Gestacional , Fígado/efeitos dos fármacos , Fígado/enzimologia , Placenta/enzimologia , Placenta/fisiopatologia , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/enzimologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/sangue
19.
Am J Physiol Heart Circ Physiol ; 301(1): H253-60, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21536850

RESUMO

The Cre-loxP system is a useful tool to study the physiological effects of gene knockout in the heart. One limitation with using this system in the heart is the toxic effect of chronic expression of the Cre recombinase. To circumvent this limitation, a widely used inducible cardiac-specific model, Myh6-MerCreMer (Cre), using tamoxifen (TAM) to activate Cre has been developed. The current study examined cardiac function in Cre-positive C57B/J6 mice exposed to one, three, or five daily doses of a 40 mg/kg TAM to induce Cre activity specifically in the heart. Echocardiography demonstrated no statistically significant differences in systolic function (SF) at baseline as assessed by fractional shortening. In mice exposed to five injections, a significant fall in all determinants of SF was observed 6 days after TAM was initiated. However, SF returned to baseline levels 10 days after TAM initiation although the hearts exhibited significant hypertrophy. Heart weight-to-tibia length ratios were 73 ± 3, 78.5 ± 6, and 87.6 ± 9 mg/cm for one, three, and five TAM injections, respectively. TAM had no effect on cardiac function or hypertrophy in Cre-negative mice. Cre-positive mice receiving five TAM injections had significant reductions in cardiac mitochondrial ATP and significant reductions in the expression of proteins important for the regulation of cardiac oxidative phosphorylation including peroxisome proliferator-activated receptor-γ coactivator-1α and pyruvate dehydrogenase kinase-4. Thus inducible cardiac-specific activation of Cre recombinase caused a transient decline in SF that was dependent on the number of TAM doses and associated with significant hypertrophy and alterations in mitochondrial ATP and important proteins involved in the regulation of cardiac oxidative phosphorylation.


Assuntos
Antagonistas de Estrogênios/farmacologia , Insuficiência Cardíaca Sistólica/genética , Insuficiência Cardíaca Sistólica/fisiopatologia , Integrases/genética , Tamoxifeno/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Citoesqueleto/metabolismo , Ecocardiografia , Metabolismo Energético/fisiologia , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Feminino , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Sístole/fisiologia , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo , Função Ventricular Esquerda/fisiologia
20.
Hypertension ; 57(5): 941-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21383306

RESUMO

Recent in vitro studies have reported that heme oxygenase 1 (HO-1) downregulates the angiostatic protein soluble fms-like tyrosine kinase 1 from placental villous explants and that the HO-1 metabolites CO and bilirubin negatively regulate endothelin 1 and reactive oxygen species. Although soluble fms-like tyrosine kinase 1, endothelin 1, and reactive oxygen species have been implicated in the pathophysiology of hypertension during preeclampsia and in response to placental ischemia in pregnant rats, it is unknown whether chronic induction of HO-1 alters the hypertensive response to placental ischemia. The present study examined the hypothesis that HO-1 induction in a rat model of placental ischemia would beneficially affect blood pressure, angiogenic balance, superoxide, and endothelin 1 production in the ischemic placenta. To achieve this goal we examined the effects of cobalt protoporphyrin, an HO-1 inducer, in the reduced uterine perfusion pressure (RUPP) placental ischemia model and in normal pregnant rats. In response to RUPP treatment, mean arterial pressure increases 29 mm Hg (136±7 versus 106±5 mm Hg), which is significantly attenuated by cobalt protoporphyrin (118±5 mm Hg). Although RUPP treatment causes placental soluble fms-like tyrosine kinase 1/vascular endothelial growth factor ratios to alter significantly to an angiostatic balance (1.00±0.10 versus 1.27±0.20), treatment with cobalt protoporphyrin causes a significant shift in the ratio to an angiogenic balance (0.68±0.10). Placental superoxide increased in RUPP (952.5±278.8 versus 243.9±70.5 relative light units/min per milligram) but was significantly attenuated by HO-1 induction (482.7±117.4 relative light units/min per milligram). Also, the preproendothelin message was significantly increased in RUPP, which was prevented by cobalt protoporphyrin. These data indicate that HO-1, or its metabolites, is a potential therapeutic for the treatment of preeclampsia.


Assuntos
Pressão Sanguínea/fisiologia , Heme Oxigenase-1/metabolismo , Hipertensão/enzimologia , Isquemia/enzimologia , Placenta/enzimologia , Útero/enzimologia , Animais , Western Blotting , Feminino , Hipertensão/etiologia , Hipertensão/fisiopatologia , Isquemia/complicações , Isquemia/fisiopatologia , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Placenta/fisiopatologia , Gravidez , Protoporfirinas/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Útero/irrigação sanguínea , Útero/efeitos dos fármacos , Útero/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA