Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2626: 399-444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715918

RESUMO

Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.


Assuntos
Drosophila , Saúde Pública , Animais , Pesquisa
2.
ACS Biomater Sci Eng ; 8(8): 3526-3541, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838679

RESUMO

Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.


Assuntos
Macrófagos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Macrófagos/metabolismo , Camundongos , Fenótipo
3.
Anticancer Res ; 41(1): 27-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33419797

RESUMO

BACKGROUND/AIM: We have tested whether the anticancer peptide, PNC-27, that kills cancer cells but not normal cells by binding to cancer cell membrane HDM-2 forming pores, kills CD44+ colon cancer stem cells. MATERIALS AND METHODS: Flow cytometry determined the CD44 and HDM-2 expression on six-colon cancer cell lines and one normal cell line (CCD-18Co). MTT, LDH release, annexin V binding and caspase 3 assays were used to assess PNC-27-induced cell death. Bioluminescence imaging measured PNC-27 effects on in vivo tumor growth. RESULTS: High percentages of cells in all six tumor lines expressed CD44. PNC-27 co-localized with membrane HDM-2 only in the cancer cells and caused total cell death (tumor cell necrosis, high LDH release, negative annexin V and caspase 3). In vivo, PNC-27 caused necrosis of tumor nodules but not of normal tissue. CONCLUSION: PNC-27 selectively kills colon cancer stem cells by binding of this peptide to membrane H/MDM-2.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Neoplasias do Colo/etiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Terapia de Alvo Molecular , Necrose/patologia , Ligação Proteica , Proteína Supressora de Tumor p53/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anticancer Res ; 40(9): 4857-4867, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878773

RESUMO

BACKGROUND/AIM: Anticancer peptide PNC-27 binds to HDM-2 protein on cancer cell membranes inducing the formation of cytotoxic transmembrane pores. Herein, we investigated HDM-2 membrane expression and the effect of PNC-27 treatment on human non-stem cell acute myelogenous leukemia cell lines: U937, acute monocytic leukemia; OCI-AML3, acute myelomonocytic leukemia and HL60, acute promyelocytic leukemia. MATERIALS AND METHODS: We measured cell surface membrane expression of HDM-2 using flow cytometry. Cell viability was assessed using MTT assay while direct cytotoxicity was measured by lactate dehydrogenase (LDH) release and induction of apoptotic markers annexin V and caspase-3. RESULTS: HDM-2 is expressed at high levels in membranes of U937, OCI-AML3 and HL-60 cells. PNC-27 can bind to membrane HDM-2 to induce cell necrosis and LDH release within 4 h. CONCLUSION: Targeting membrane HDM-2 can be a potential strategy to treat leukemia. PNC-27 targeting membrane HDM-2 demonstrated significant anti-leukemia activity in a variety of leukemic cell lines.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , L-Lactato Desidrogenase/metabolismo , Leucemia Mieloide/metabolismo , Necrose , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA