Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105076, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481208

RESUMO

The bacterial cell wall consists of a three-dimensional peptidoglycan layer, composed of peptides linked to the sugars N-acetylmuramic acid (MurNAc) and GlcNAc. Unlike other bacteria, the pathogenic Tannerella forsythia, a member of the red complex group of bacteria associated with the late stages of periodontitis, lacks biosynthetic pathways for MurNAc production and therefore obtains MurNAc from the environment. Sugar kinases play a crucial role in the MurNAc recycling process, activating the sugar molecules by phosphorylation. In this study, we present the first crystal structures of a MurNAc kinase, called murein sugar kinase (MurK), in its unbound state as well as in complexes with the ATP analog ß-γ-methylene adenosine triphosphate (AMP-PCP) and with MurNAc. We also determined the crystal structures of K1058, a paralogous MurNAc kinase of T. forsythia, in its unbound state and in complex with MurNAc. We identified the active site and residues crucial for MurNAc specificity as the less bulky side chains of S133, P134, and L135, which enlarge the binding cavity for the lactyl ether group, unlike the glutamate or histidine residues present in structural homologs. In establishing the apparent kinetic parameters for both enzymes, we showed a comparable affinity for MurNAc (Km 180 µM and 30 µM for MurK and K1058, respectively), with MurK being over two hundred times faster than K1058 (Vmax 80 and 0.34 µmol min-1 mg-1, respectively). These data might support a structure-guided approach to development of inhibitory MurNAc analogs for pathogen MurK enzymes.


Assuntos
Modelos Moleculares , Ácidos Murâmicos , Fosfotransferases , Tannerella forsythia , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Tannerella forsythia/enzimologia , Fosfotransferases/química , Fosfotransferases/metabolismo , Estrutura Terciária de Proteína , Cristalografia por Raios X , Domínio Catalítico , Ativação Enzimática
2.
Cell Rep ; 42(2): 112114, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790933

RESUMO

BK polyomavirus (BKPyV) is an opportunistic pathogen that uses the b-series gangliosides GD1b and GT1b as entry receptors. Here, we characterize the impact of naturally occurring VP1 mutations on ganglioside binding, VP1 protein structure, and virus tropism. Infectious entry of single mutants E73Q and E73A and the triple mutant A72V-E73Q-E82Q (VQQ) remains sialic acid dependent, and all three variants acquire binding to a-series gangliosides, including GD1a. However, the E73A and VQQ variants lose the ability to infect ganglioside-complemented cells, and this correlates with a clear shift of the BC2 loop in the crystal structures of E73A and VQQ. On the other hand, the K69N mutation in the K69N-E82Q variant leads to a steric clash that precludes sialic acid binding. Nevertheless, this mutant retains significant infectivity in 293TT cells, which is not dependent on heparan sulfate proteoglycans, implying that an unknown sialic acid-independent entry receptor for BKPyV exists.


Assuntos
Vírus BK , Polyomavirus , Vírus BK/genética , Vírus BK/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polyomavirus/genética , Polyomavirus/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Gangliosídeos/metabolismo
3.
Angew Chem Int Ed Engl ; 62(12): e202215460, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585954

RESUMO

Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.


Assuntos
Aminoácidos , Triazóis , Domínios Proteicos , Peptídeos/química , Acetilação
4.
RSC Med Chem ; 13(12): 1575-1586, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36561072

RESUMO

The cellular tumor antigen p53 is a key component in cell cycle control. The mutation Y220C heavily destabilizes the protein thermally but yields a druggable crevice. We have screened the diversity-optimized halogen-enriched fragment library against T-p53C-Y220C with STD-NMR and DSF to identify hits, which we validated by 1H,15N-HSQC NMR. We could identify four hits binding in the Y220C cleft, one hit binding covalently and four hits binding to an uncharacterized binding site. Compound 1151 could be crystallized showing a flip of C220 and thus opening subsite 3. Additionally, 4482 was identified to alkylate cysteines. Data shows that the diversity-optimized HEFLib leads to multiple diverse hits. The identified scaffolds can be used to further optimize interactions with T-p53C-Y220C and increase thermal stability.

5.
Biomacromolecules ; 23(12): 5273-5284, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36398945

RESUMO

Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.


Assuntos
Polyomavirus , Humanos , Polyomavirus/química , Proteínas do Capsídeo/química , Oligossacarídeos/química , Glicosilação , Carboidratos/química , Glicoconjugados , Substâncias Macromoleculares
6.
JACC Basic Transl Sci ; 7(5): 445-461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663628

RESUMO

Genetic predisposition through F11R-single-nucleotide variation (SNV) influences circulatory soluble junctional adhesion molecule-A (sJAM-A) levels in coronary artery disease (CAD) patients. Homozygous carriers of the minor alleles (F11R-SNVs rs2774276, rs790056) show enhanced levels of thrombo-inflammatory sJAM-A. Both F11R-SNVs and sJAM-A are associated with worse prognosis for recurrent myocardial infarction in CAD patients. Platelet surface-associated JAM-A correlate with platelet activation markers in CAD patients. Activated platelets shed transmembrane-JAM-A, generating proinflammatory sJAM-A and JAM-A-bearing microparticles. Platelet transmembrane-JAM-A and sJAM-A as homophilic interaction partners exaggerate thrombotic and thrombo-inflammatory platelet monocyte interactions. Therapeutic strategies interfering with this homophilic interface may regulate thrombotic and thrombo-inflammatory platelet response in cardiovascular pathologies where circulatory sJAM-A levels are elevated.

7.
J Virol ; 96(3): e0082621, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787457

RESUMO

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Assuntos
Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Interações Hospedeiro-Patógeno , Proteína Cofatora de Membrana/metabolismo , Adenovírus Humanos/ultraestrutura , Animais , Biomarcadores , Contagem de Células Sanguíneas , Células CHO , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/química , Cricetulus , Modelos Animais de Doenças , Expressão Gênica , Humanos , Proteína Cofatora de Membrana/química , Proteína Cofatora de Membrana/genética , Camundongos Transgênicos , Modelos Biológicos , Modelos Moleculares , Mutagênese , Ligação Proteica , Conformação Proteica , Sorogrupo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Relação Estrutura-Atividade
8.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946963

RESUMO

Viruses are infectious agents that hijack the host cell machinery in order to replicate and generate progeny. Viral infection is initiated by attachment to host cell receptors, and typical viral receptors are cell-surface-borne molecules such as proteins or glycan structures. Sialylated glycans (glycans bearing sialic acids) and glycosaminoglycans (GAGs) represent major classes of carbohydrate receptors and have been implicated in facilitating viral entry for many viruses. As interactions between viruses and sialic acids have been extensively reviewed in the past, this review provides an overview of the current state of structural knowledge about interactions between non-enveloped human viruses and GAGs. We focus here on adeno-associated viruses, human papilloma viruses (HPVs), and polyomaviruses, as at least some structural information about the interactions of these viruses with GAGs is available. We also discuss the multivalent potential for GAG binding, highlighting the importance of charged interactions and positively charged amino acids at the binding sites, and point out challenges that remain in the field.


Assuntos
Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Fenômenos Fisiológicos Virais , Animais , Humanos , Conformação Molecular , Relação Estrutura-Atividade , Internalização do Vírus , Vírus/classificação , Vírus/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33384338

RESUMO

Human adenovirus species D (HAdV-D) types are currently being explored as vaccine vectors for coronavirus disease 2019 (COVID-19) and other severe infectious diseases. The efficacy of such vector-based vaccines depends on functional interactions with receptors on host cells. Adenoviruses of different species are assumed to enter host cells mainly by interactions between the knob domain of the protruding fiber capsid protein and cellular receptors. Using a cell-based receptor-screening assay, we identified CD46 as a receptor for HAdV-D56. The function of CD46 was validated in infection experiments using cells lacking and overexpressing CD46, and by competition infection experiments using soluble CD46. Remarkably, unlike HAdV-B types that engage CD46 through interactions with the knob domain of the fiber protein, HAdV-D types infect host cells through a direct interaction between CD46 and the hexon protein. Soluble hexon proteins (but not fiber knob) inhibited HAdV-D56 infection, and surface plasmon analyses demonstrated that CD46 binds to HAdV-D hexon (but not fiber knob) proteins. Cryoelectron microscopy analysis of the HAdV-D56 virion-CD46 complex confirmed the interaction and showed that CD46 binds to the central cavity of hexon trimers. Finally, soluble CD46 inhibited infection by 16 out of 17 investigated HAdV-D types, suggesting that CD46 is an important receptor for a large group of adenoviruses. In conclusion, this study identifies a noncanonical entry mechanism used by human adenoviruses, which adds to the knowledge of adenovirus biology and can also be useful for development of adenovirus-based vaccine vectors.


Assuntos
Adenovírus Humanos , Vacinas contra COVID-19 , Proteínas do Capsídeo , Regulação Viral da Expressão Gênica , SARS-CoV-2/genética , Internalização do Vírus , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/metabolismo , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Linhagem Celular , Humanos
10.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938765

RESUMO

Reovirus attachment protein σ1 is a trimeric molecule containing tail, body, and head domains. During infection, σ1 engages sialylated glycans and junctional adhesion molecule-A (JAM-A), triggering uptake into the endocytic compartment, where virions are proteolytically converted to infectious subvirion particles (ISVPs). Further disassembly allows σ1 release and escape of transcriptionally active reovirus cores into the cytosol. Electron microscopy has revealed a distinct conformational change in σ1 from a compact form on virions to an extended form on ISVPs. To determine the importance of σ1 conformational mobility, we used reverse genetics to introduce cysteine mutations that can cross-link σ1 by establishing disulfide bonds between structurally adjacent sites in the tail, body, and head domains. We detected phenotypic differences among the engineered viruses. A mutant with a cysteine pair in the head domain replicates with enhanced kinetics, forms large plaques, and displays increased avidity for JAM-A relative to the parental virus, mimicking properties of ISVPs. However, unlike ISVPs, particles containing cysteine mutations that cross-link the head domain uncoat and transcribe viral positive-sense RNA with kinetics similar to the parental virus and are sensitive to ammonium chloride, which blocks virion-to-ISVP conversion. Together, these data suggest that σ1 conformational flexibility modulates the efficiency of reovirus host cell attachment.IMPORTANCE Nonenveloped virus entry is an incompletely understood process. For reovirus, the functional significance of conformational rearrangements in the attachment protein, σ1, that occur during entry and particle uncoating are unknown. We engineered and characterized reoviruses containing cysteine mutations that cross-link σ1 monomers in nonreducing conditions. We found that the introduction of a cysteine pair in the receptor-binding domain of σ1 yielded a virus that replicates with faster kinetics than the parental virus and forms larger plaques. Using functional assays, we found that cross-linking the σ1 receptor-binding domain modulates reovirus attachment but not uncoating or transcription. These data suggest that σ1 conformational rearrangements mediate the efficiency of reovirus host cell binding.


Assuntos
Reoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ligação Viral , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Células L , Camundongos , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Reoviridae/genética , Proteínas Virais/genética , Vírion/metabolismo , Internalização do Vírus
11.
ACS Chem Biol ; 15(10): 2683-2691, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32845119

RESUMO

Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Enterovirus Humano C/efeitos dos fármacos , Ácidos Siálicos/farmacologia , Adenovírus Humanos/química , Sítios de Ligação , Enterovirus Humano C/química , Humanos , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
12.
mBio ; 11(4)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723915

RESUMO

Asymptomatic infections with polyomaviruses in humans are common, but these small viruses can cause severe diseases in immunocompromised hosts. New Jersey polyomavirus (NJPyV) was identified via a muscle biopsy in an organ transplant recipient with systemic vasculitis, myositis, and retinal blindness, and human polyomavirus 12 (HPyV12) was detected in human liver tissue. The evolutionary origins and potential diseases are not well understood for either virus. In order to define their receptor engagement strategies, we first used nuclear magnetic resonance (NMR) spectroscopy to establish that the major capsid proteins (VP1) of both viruses bind to sialic acid in solution. We then solved crystal structures of NJPyV and HPyV12 VP1 alone and in complex with sialylated glycans. NJPyV employs a novel binding site for a α2,3-linked sialic acid, whereas HPyV12 engages terminal α2,3- or α2,6-linked sialic acids in an exposed site similar to that found in Trichodysplasia spinulosa-associated polyomavirus (TSPyV). Gangliosides or glycoproteins, featuring in mammals usually terminal sialic acids, are therefore receptor candidates for both viruses. Structural analyses show that the sialic acid-binding site of NJPyV is conserved in chimpanzee polyomavirus (ChPyV) and that the sialic acid-binding site of HPyV12 is widely used across the entire polyomavirus family, including mammalian and avian polyomaviruses. A comparison with other polyomavirus-receptor complex structures shows that their capsids have evolved to generate several physically distinct virus-specific receptor-binding sites that can all specifically engage sialylated glycans through a limited number of contacts. Small changes in each site may have enabled host-switching events during the evolution of polyomaviruses.IMPORTANCE Virus attachment to cell surface receptors is critical for productive infection. In this study, we have used a structure-based approach to investigate the cell surface recognition event for New Jersey polyomavirus (NJPyV) and human polyomavirus 12 (HPyV12). These viruses belong to the polyomavirus family, whose members target different tissues and hosts, including mammals, birds, fish, and invertebrates. Polyomaviruses are nonenveloped viruses, and the receptor-binding site is located in their capsid protein VP1. The NJPyV capsid features a novel sialic acid-binding site that is shifted in comparison to other structurally characterized polyomaviruses but shared with a closely related simian virus. In contrast, HPyV12 VP1 engages terminal sialic acids in a manner similar to the human Trichodysplasia spinulosa-associated polyomavirus. Our structure-based phylogenetic analysis highlights that even distantly related avian polyomaviruses possess the same exposed sialic acid-binding site. These findings complement phylogenetic models of host-virus codivergence and may also reflect past host-switching events.


Assuntos
Proteínas do Capsídeo/química , Polyomavirus/genética , Polissacarídeos/química , Receptores Virais/química , Sítios de Ligação , Proteínas do Capsídeo/genética , Cristalografia , Evolução Molecular , Humanos , Ácido N-Acetilneuramínico/metabolismo , Filogenia , Polyomavirus/química , Polyomavirus/classificação , Infecções por Polyomavirus/virologia , Ligação Proteica , Conformação Proteica , Receptores Virais/genética , Ligação Viral
13.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32699083

RESUMO

Merkel cell polyomavirus (MCPyV) is a human double-stranded DNA tumor virus. MCPyV cell entry is unique among members of the polyomavirus family as it requires the engagement of two types of glycans, sialylated oligosaccharides and sulfated glycosaminoglycans (GAGs). Here, we present crystallographic and cryo-electron microscopic structures of the icosahedral MCPyV capsid and analysis of its glycan interactions via nuclear magnetic resonance (NMR) spectroscopy. While sialic acid binding is specific for α2-3-linked sialic acid and mediated by the exposed apical loops of the major capsid protein VP1, a broad range of GAG oligosaccharides bind to recessed regions between VP1 capsomers. Individual VP1 capsomers are tethered to one another by an extensive disulfide network that differs in architecture from previously described interactions for other PyVs. An unusual C-terminal extension in MCPyV VP1 projects from the recessed capsid regions. Mutagenesis experiments show that this extension is dispensable for receptor interactions.IMPORTANCE The MCPyV genome was found to be clonally integrated in 80% of cases of Merkel cell carcinoma (MCC), a rare but aggressive form of human skin cancer, strongly suggesting that this virus is tumorigenic. In the metastasizing state, the course of the disease is often fatal, especially in immunocompromised individuals, as reflected by the high mortality rate of 33 to 46% and the low 5-year survival rate (<45%). The high seroprevalence of about 60% makes MCPyV a serious health care burden and illustrates the need for targeted treatments. In this study, we present the first high-resolution structural data for this human tumor virus and demonstrate that the full capsid is required for the essential interaction with its GAG receptor(s). Together, these data can be used as a basis for future strategies in drug development.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Poliomavírus das Células de Merkel/metabolismo , Receptores de Superfície Celular/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Linhagem Celular , Microscopia Crioeletrônica , Humanos , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/ultraestrutura , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Estrutura Secundária de Proteína , Receptores de Superfície Celular/genética
14.
Med Microbiol Immunol ; 209(3): 325-333, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31784892

RESUMO

Human Adenoviruses (HAdVs) are a family of clinically and therapeutically relevant viruses. A precise understanding of their host cell attachment and entry mechanisms can be applied in inhibitor design and the construction of targeted gene delivery vectors. In this article, structural data on adenovirus attachment and entry are reviewed. HAdVs engage two types of receptors: first, an attachment receptor that is bound by the fibre knob protein protruding from the icosahedral capsid, and next, an integrin entry receptor bound by the pentameric penton base at the capsid vertices. Adenoviruses use remarkably diverse attachment receptors, five of which have been studied structurally in the context of HAdV binding: Coxsackie and Adenovirus Receptor, CD46, the glycans GD1a and polysialic acid, and desmoglein-2. Together with the integrin entry receptors, they display both symmetrical and asymmetrical modes of binding to the virus as demonstrated by the structural analyses reviewed here. The diversity of HAdV receptors contributes to the broad tropism of these viruses, and structural studies are thus an important source of information on HAdV-host cell interactions. The imbalance in structural data between the more and less extensively studied receptors remains to be addressed by future research.


Assuntos
Adenovírus Humanos/fisiologia , Ligação Proteica , Receptores Virais/química , Receptores Virais/fisiologia , Ligação Viral , Internalização do Vírus , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/fisiologia , Desmogleína 2/fisiologia , Gangliosídeos/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Integrinas/fisiologia , Proteína Cofatora de Membrana/fisiologia , Ácidos Siálicos/fisiologia
15.
Macromol Biosci ; 19(5): e1800426, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884172

RESUMO

Divalent precision glycooligomers terminating in N-acetylneuraminic acid (Neu5Ac) or 3'-sialyllactose (3'-SL) with varying linkers between scaffold and the glycan portions are synthesized via solid phase synthesis for co-crystallization studies with the sialic acid-binding major capsid protein VP1 of human Trichodysplasia spinulosa-associated Polyomavirus. High-resolution crystal structures of complexes demonstrate that the compounds bind to VP1 depending on the favorable combination of carbohydrate ligand and linker. It is found that artificial linkers can replace portions of natural carbohydrate linkers as long as they meet certain requirements such as size or flexibility to optimize contact area between ligand and receptor binding sites. The obtained results will influence the design of future high affinity ligands based on the structures presented here, and they can serve as a blueprint to develop multivalent glycooligomers as inhibitors of viral adhesion.


Assuntos
Proteínas do Capsídeo/química , Ácido N-Acetilneuramínico/química , Polyomavirus/química , Polissacarídeos/química , Cristalografia por Raios X , Humanos
16.
Adv Carbohydr Chem Biochem ; 76: 65-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30851744

RESUMO

Sialic acid-based glycoconjugates cover the surfaces of many different cell types, defining key properties of the cell surface such as overall charge or likely interaction partners. Because of this prominence, sialic acids play prominent roles in mediating attachment and entry to viruses belonging to many different families. In this review, we first describe how interactions between viruses and sialic acid-based glycan structures can be identified and characterized using a range of techniques. We then highlight interactions between sialic acids and virus capsid proteins in four different viruses, and discuss what these interactions have taught us about sialic acid engagement and opportunities to interfere with binding.


Assuntos
Receptores Virais/química , Ácidos Siálicos/farmacologia , Viroses/tratamento farmacológico , Animais , Humanos , Receptores Virais/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Viroses/virologia
17.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209169

RESUMO

Viral capsid components that bind cellular receptors mediate critical functions in viral tropism and disease pathogenesis. Mammalian orthoreoviruses (reoviruses) spread systemically in newborn mice to cause serotype-specific disease in the central nervous system (CNS). Serotype 1 (T1) reovirus infects ependymal cells to cause nonlethal hydrocephalus, whereas serotype 3 (T3) reovirus infects neurons to cause fulminant and lethal encephalitis. This serotype-dependent difference in tropism and concomitant disease is attributed to the σ1 viral attachment protein, which is composed of head, body, and tail domains. To identify σ1 sequences that contribute to tropism for specific cell types in the CNS, we engineered a panel of viruses expressing chimeric σ1 proteins in which discrete σ1 domains have been reciprocally exchanged. Parental and chimeric σ1 viruses were compared for replication, tropism, and disease induction following intracranial inoculation of newborn mice. Viruses expressing T1 σ1 head sequences infect the ependyma, produce relatively lower titers in the brain, and do not cause significant disease. In contrast, viruses expressing T3 σ1 head sequences efficiently infect neurons, replicate to relatively higher titers in the brain, and cause a lethal encephalitis. Additionally, T3 σ1 head-expressing viruses display enhanced infectivity of cultured primary cortical neurons compared with T1 σ1 head-expressing viruses. These results indicate that T3 σ1 head domain sequences promote infection of neurons, likely by interaction with a neuron-specific receptor, and dictate tropism in the CNS and induction of encephalitis.IMPORTANCE Viral encephalitis is a serious and often life-threatening inflammation of the brain. Mammalian orthoreoviruses are promising oncolytic therapeutics for humans but establish virulent, serotype-dependent disease in the central nervous system (CNS) of many young mammals. Serotype 1 reoviruses infect ependymal cells and produce hydrocephalus, whereas serotype 3 reoviruses infect neurons and cause encephalitis. Reovirus neurotropism is hypothesized to be dictated by the filamentous σ1 viral attachment protein. However, it is not apparent how this protein mediates disease. We discovered that sequences forming the most virion-distal domain of T1 and T3 σ1 coordinate infection of either ependyma or neurons, respectively, leading to mutually exclusive patterns of tropism and disease in the CNS. These studies contribute new knowledge about how reoviruses target cells for infection in the brain and inform the rational design of improved oncolytic therapies to mitigate difficult-to-treat tumors of the CNS.


Assuntos
Proteínas do Capsídeo/metabolismo , Sistema Nervoso Central/virologia , Receptores de Superfície Celular/metabolismo , Infecções por Reoviridae/virologia , Tropismo Viral , Virulência , Ligação Viral , Animais , Anticorpos Neutralizantes , Proteínas do Capsídeo/genética , Sistema Nervoso Central/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Reoviridae/patogenicidade , Infecções por Reoviridae/genética , Infecções por Reoviridae/metabolismo , Internalização do Vírus , Replicação Viral
18.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 8): 451-462, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084394

RESUMO

Biomolecular NMR spectroscopy has limitations in the determination of protein structures: an inherent size limit and the requirement for expensive and potentially difficult isotope labelling pose considerable hurdles. Therefore, structural analysis of larger proteins is almost exclusively performed by crystallography. However, the diversity of biological NMR applications outperforms that of any other structural biology technique. For the characterization of transient complexes formed by proteins and small ligands, notably oligosaccharides, one NMR technique has recently proven to be particularly powerful: saturation-transfer difference NMR (STD-NMR) spectroscopy. STD-NMR experiments are fast and simple to set up, with no general protein size limit and no requirement for isotope labelling. The method performs best in the moderate-to-low affinity range that is of interest in most of glycobiology. With small amounts of unlabelled protein, STD-NMR experiments can identify hits from mixtures of potential ligands, characterize mutant proteins and pinpoint binding epitopes on the ligand side. STD-NMR can thus be employed to complement and improve protein-ligand complex models obtained by other structural biology techniques or by purely computational means. With a set of protein-glycan interactions from our own work, this review provides an introduction to the technique for structural biologists. It exemplifies how crystallography and STD-NMR can be combined to elucidate protein-glycan (and other protein-ligand) interactions in atomic detail, and how the technique can extend structural biology from simplified systems amenable to crystallization to more complex biological entities such as membranes, live viruses or entire cells.


Assuntos
Lectinas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Polyomavirus/química , Polissacarídeos/química , Animais , Cristalografia por Raios X/métodos , Humanos , Lectinas/metabolismo , Polyomavirus/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Proc Natl Acad Sci U S A ; 115(18): E4264-E4273, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674446

RESUMO

Human adenovirus 52 (HAdV-52) is one of only three known HAdVs equipped with both a long and a short fiber protein. While the long fiber binds to the coxsackie and adenovirus receptor, the function of the short fiber in the virus life cycle is poorly understood. Here, we show, by glycan microarray analysis and cellular studies, that the short fiber knob (SFK) of HAdV-52 recognizes long chains of α-2,8-linked polysialic acid (polySia), a large posttranslational modification of selected carrier proteins, and that HAdV-52 can use polySia as a receptor on target cells. X-ray crystallography, NMR, molecular dynamics simulation, and structure-guided mutagenesis of the SFK reveal that the nonreducing, terminal sialic acid of polySia engages the protein with direct contacts, and that specificity for polySia is achieved through subtle, transient electrostatic interactions with additional sialic acid residues. In this study, we present a previously unrecognized role for polySia as a cellular receptor for a human viral pathogen. Our detailed analysis of the determinants of specificity for this interaction has general implications for protein-carbohydrate interactions, particularly concerning highly charged glycan structures, and provides interesting dimensions on the biology and evolution of members of Human mastadenovirus G.


Assuntos
Adenovírus Humanos/química , Simulação de Dinâmica Molecular , Ácidos Siálicos/química , Adenovírus Humanos/metabolismo , Linhagem Celular Tumoral , Humanos , Ácidos Siálicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA