Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 13: 856966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401533

RESUMO

Introduction: In colitis, macrophage functionality is altered compared to normal homeostatic conditions. Loss of IL-10 signaling results in an inappropriate chronic inflammatory response to bacterial stimulation. It remains unknown if inhibition of bromodomain and extra-terminal domain (BET) proteins alters usage of DNA regulatory elements responsible for driving inflammatory gene expression. We determined if the BET inhibitor, (+)-JQ1, could suppress inflammatory activation of macrophages in Il10-/- mice. Methods: We performed ATAC-seq and RNA-seq on Il10-/- bone marrow-derived macrophages (BMDMs) cultured in the presence and absence of lipopolysaccharide (LPS) with and without treatment with (+)-JQ1 and evaluated changes in chromatin accessibility and gene expression. Germ-free Il10-/- mice were treated with (+)-JQ1, colonized with fecal slurries and underwent histological and molecular evaluation 14-days post colonization. Results: Treatment with (+)-JQ1 suppressed LPS-induced changes in chromatin at distal regulatory elements associated with inflammatory genes, particularly in regions that contain motifs for AP-1 and IRF transcription factors. This resulted in attenuation of inflammatory gene expression. Treatment with (+)-JQ1 in vivo resulted in a mild reduction in colitis severity as compared with vehicle-treated mice. Conclusion: We identified the mechanism of action associated with a new class of compounds that may mitigate aberrant macrophage responses to bacteria in colitis.


Assuntos
Colite , Microbiota , Animais , Cromatina/genética , Cromatina/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Receptores de Superfície Celular , Fatores de Transcrição/metabolismo
3.
Sci Rep ; 11(1): 13533, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188154

RESUMO

The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. We examined the expression of colonic ACE2 in 67 adult CD and 14 NIBD control patients using RNA-seq and quantitative (q) RT-PCR. We validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. Colonic ACE2 expression was significantly higher in a subset of adult CD patients which was defined as the ACE2-high CD subset. IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of CD diagnosis, and a Cox regression analysis found that high ACE2 levels is an independent risk factor for surgery (OR 2.17; 95% CI, 1.10-4.26; p = 0.025). Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that can impact CD disease-related outcomes.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Doença de Crohn/patologia , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2/genética , Doença de Crohn/metabolismo , Doença de Crohn/cirurgia , Feminino , Humanos , Íleo/metabolismo , Íleo/patologia , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Masculino , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Fatores de Risco , Análise de Sequência de RNA , Adulto Jovem
4.
bioRxiv ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33269348

RESUMO

BACKGROUND AND AIMS: The host receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), is highly expressed in small intestine. Our aim was to study colonic ACE2 expression in Crohn's disease (CD) and non-inflammatory bowel disease (non-IBD) controls. We hypothesized that the colonic expression levels of ACE2 impacts CD course. METHODS: We examined the expression of colon ACE2 using RNA-seq and quantitative (q) RT-PCR from 69 adult CD and 14 NIBD control patients. In a subset of this cohort we validated ACE2 protein expression and localization in formalin-fixed, paraffin-embedded matched colon and ileal tissues using immunohistochemistry. The impact of increased ACE2 expression in CD for the risk of surgery was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. To provide critical support for the generality of our findings, we analyzed previously published RNA-seq data from two large independent cohorts of CD patients. RESULTS: Colonic ACE2 expression was significantly higher in a subset of adult CD patients (ACE2-high CD). IHC in a sampling of ACE2-high CD patients confirmed high ACE2 protein expression in the colon and ileum compared to ACE2-low CD and NIBD patients. Notably, we found that ACE2-high CD patients are significantly more likely to undergo surgery within 5 years of diagnosis, with a Cox regression analysis finding that high ACE2 levels is an independent risk factor (OR 2.18; 95%CI, 1.05-4.55; p=0.037). CONCLUSION: Increased intestinal expression of ACE2 is associated with deteriorated clinical outcomes in CD patients. These data point to the need for molecular stratification that may impact CD disease-related outcomes.

5.
Cell Mol Gastroenterol Hepatol ; 10(4): 779-796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32561494

RESUMO

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) barrier dysfunction is critical to the development of Crohn's disease (CD). However, the mechanism is understudied. We recently reported increased microRNA-31-5p (miR-31-5p) expression in colonic IECs of CD patients, but downstream targets and functional consequences are unknown. METHODS: microRNA-31-5p target genes were identified by integrative analysis of RNA- and small RNA-sequencing data from colonic mucosa and confirmed by quantitative polymerase chain reaction in colonic IECs. Functional characterization of activin receptor-like kinase 1 (ACVRL1 or ALK1) in IECs was performed ex vivo using 2-dimensional cultured human primary colonic IECs. The impact of altered colonic ALK1 signaling in CD for the risk of surgery and endoscopic relapse was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. RESULTS: ALK1 was identified as a target of miR-31-5p in colonic IECs of CD patients and confirmed using a 3'-untranslated region reporter assay. Activation of ALK1 restricted the proliferation of colonic IECs in a 5-ethynyl-2-deoxyuridine proliferation assay and down-regulated the expression of stemness-related genes. Activated ALK1 signaling increased colonic IEC differentiation toward colonocytes. Down-regulated ALK1 signaling was associated with increased stemness and decreased colonocyte-specific marker expression in colonic IECs of CD patients compared with healthy controls. Activation of ALK1 enhanced epithelial barrier integrity in a transepithelial electrical resistance permeability assay. Lower colonic ALK1 expression was identified as an independent risk factor for surgery and was associated with a higher risk of endoscopic relapse in CD patients. CONCLUSIONS: Decreased colonic ALK1 disrupted colonic IEC barrier integrity and was associated with poor clinical outcomes in CD patients.


Assuntos
Receptores de Activinas Tipo II/análise , Colo/patologia , Doença de Crohn/patologia , Mucosa Intestinal/patologia , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Adulto , Colo/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Regulação para Baixo , Ativação Enzimática , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade
6.
J Immunol ; 192(8): 3958-68, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24634494

RESUMO

The p110δ subunit of class IA PI3K modulates signaling in innate immune cells. We previously demonstrated that mice harboring a kinase-dead p110δ subunit (p110δ(KD)) develop spontaneous colitis. Macrophages contributed to the Th1/Th17 cytokine bias in p110δ(KD) mice through increased IL-12 and IL-23 expression. In this study, we show that the enteric microbiota is required for colitis development in germfree p110δ(KD) mice. Colonic tissue and macrophages from p110δ(KD) mice produce significantly less IL-10 compared with wild-type mice. p110δ(KD) APCs cocultured with naive CD4+ Ag-specific T cells also produce significantly less IL-10 and induce more IFN-γ- and IL-17A-producing CD4+ T cells compared with wild-type APCs. Illustrating the importance of APC-T cell interactions in colitis pathogenesis in vivo, Rag1(-/-)/p110δ(KD) mice develop mild colonic inflammation and produced more colonic IL-12p40 compared with Rag1(-/-) mice. However, CD4+ CD45RB(high/low) T cell Rag1(-/-)/p110δ(KD) recipient mice develop severe colitis with increased percentages of IFN-γ- and IL-17A-producing lamina propria CD3+D4+ T cells compared with Rag1(-/-) recipient mice. Intestinal tissue samples from patients with Crohn's disease reveal significantly lower expression of PIK3CD compared with intestinal samples from non-inflammatory bowel disease control subjects (p < 0.05). PIK3CD expression inversely correlates with the ratio of IL12B:IL10 expression. In conclusion, the PI3K subunit p110δ controls homeostatic APC-T cell interactions by altering the balance between IL-10 and IL-12/23. Defects in p110δ expression and/or function may underlie the pathogenesis of human inflammatory bowel disease and lead to new therapeutic strategies.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Colite/imunologia , Colite/metabolismo , Imunidade Inata , Células Th1/metabolismo , Células Th17/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Colite/genética , Colite/microbiologia , Colite/patologia , Citocinas/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Imunidade Inata/genética , Interleucina-10/biossíntese , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microbiota , Serina-Treonina Quinases TOR/metabolismo , Células Th1/imunologia , Células Th17/imunologia
7.
J Immunol ; 192(4): 1918-27, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24442434

RESUMO

NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. In this article, we describe spontaneous colitis in Nfil3(-/-) mice. Mice lacking both Nfil3 and Il10 had severe early-onset colitis, suggesting that NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, because Nfil3/Rag1 double-knockout mice were protected from disease. However, Nfil3/Rag1 double-knockout mice adoptively transferred with wild-type CD4(+) T cells developed severe colitis compared with Rag1(-/-) recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3(-/-) mice do not develop colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-10/genética , Subunidade p40 da Interleucina-12/metabolismo , Subunidade p19 da Interleucina-23/metabolismo , Microbiota/imunologia , Transferência Adotiva , Animais , Proteínas de Arabidopsis/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Colo/imunologia , Colo/patologia , Predisposição Genética para Doença , Subunidade p40 da Interleucina-12/genética , Subunidade p19 da Interleucina-23/genética , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/genética
8.
Inflamm Bowel Dis ; 20(1): 166-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23974993

RESUMO

In the healthy gastrointestinal tract, homeostasis is an active process that requires a careful balance of host responses to the enteric luminal contents. Intestinal macrophages and dendritic cells (DCs) comprise a unique group of tissue immune cells that are ideally situated at the interface of the host and the enteric luminal environment to appropriately respond to microbes and ingested stimuli. However, intrinsic defects in macrophage and DC function contribute to the pathogenesis of inflammatory bowel diseases, as highlighted by recent genome-wide association studies. Gastrointestinal macrophages and DCs participate in inflammatory bowel disease development through inappropriate responses to enteric microbial stimuli, inefficient clearance of microbes from host tissues, and impaired transition from appropriate proinflammatory responses to anti-inflammatory responses that promote resolution. By understanding how intestinal macrophages and DCs initiate chronic inflammation, new pathogenesis-based therapeutic strategies to treat human inflammatory bowel diseases will be elucidated.


Assuntos
Células Dendríticas/imunologia , Inflamação/etiologia , Doenças Inflamatórias Intestinais/etiologia , Macrófagos/imunologia , Animais , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia
9.
Gastroenterology ; 144(4): 789-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23266559

RESUMO

BACKGROUND & AIMS: Heme oxygenase-1 (HO-1) and its metabolic by-product, carbon monoxide (CO), protect against intestinal inflammation in experimental models of colitis, but little is known about their intestinal immune mechanisms. We investigated the interactions among CO, HO-1, and the enteric microbiota in mice and zebrafish. METHODS: Germ-free, wild-type, and interleukin (Il)10(-/-) mice and germ-free zebrafish embryos were colonized with specific pathogen-free (SPF) microbiota. Germ-free or SPF-raised wild-type and Il10(-/-) mice were given intraperitoneal injections of cobalt(III) protoporphyrin IX chloride (CoPP), which up-regulates HO-1, the CO-releasing molecule Alfama-186, or saline (control). Colitis was induced in wild-type mice housed in SPF conditions by infection with Salmonella typhimurium. RESULTS: In colons of germ-free, wild-type mice, SPF microbiota induced production of HO-1 via activation of nuclear factor erythroid 2-related factor 2-, IL-10-, and Toll-like receptor-dependent pathways; similar observations were made in zebrafish. SPF microbiota did not induce HO-1 in colons of germ-free Il10(-/-) mice. Administration of CoPP to Il10(-/-) mice before transition from germ-free to SPF conditions reduced their development of colitis. In Il10(-/-) mice, CO and CoPP reduced levels of enteric bacterial genomic DNA in mesenteric lymph nodes. In mice with S typhimurium-induced enterocolitis, CoPP reduced the numbers of live S typhimurium recovered from the lamina propria, mesenteric lymph nodes, spleen, and liver. Knockdown of HO-1 in mouse macrophages impaired their bactericidal activity against E coli, E faecalis, and S typhimurium, whereas exposure to CO or overexpression of HO-1 increased their bactericidal activity. HO-1 induction and CO increased acidification of phagolysosomes. CONCLUSIONS: Colonic HO-1 prevents colonic inflammation in mice. HO-1 is induced by the enteric microbiota and its homeostatic function is mediated, in part, by promoting bactericidal activities of macrophages.


Assuntos
Translocação Bacteriana/fisiologia , Monóxido de Carbono/farmacologia , Colite/prevenção & controle , Heme Oxigenase-1/metabolismo , Salmonella typhimurium/fisiologia , Animais , Translocação Bacteriana/efeitos dos fármacos , Western Blotting , Colite/tratamento farmacológico , Colite/microbiologia , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Gentamicinas/farmacologia , Heme Oxigenase-1/biossíntese , Macrófagos/citologia , Macrófagos/fisiologia , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real
10.
Gastroenterology ; 139(5): 1642-53, 1653.e1-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20637203

RESUMO

BACKGROUND & AIMS: Innate immune responses are crucial for host defense against pathogens but need to be tightly regulated to prevent chronic inflammation. Initial characterization of mice with a targeted inactivating mutation in the p110δ subunit of phosphoinositide 3-kinase (PI3K p110δ(D910A/D910A)) revealed defects in B- and T-cell signaling and chronic colitis. Here, we further characterize features of inflammatory bowel diseases in these mice and investigate underlying innate immune defects. METHODS: Colons and macrophages from PI3K p110δ(D910A/D910A) mice were evaluated for colonic inflammation and innate immune dysfunction. Colonic p110δ messenger RNA expression was examined in interleukin (IL)-10(-/-) and wild-type germ-free mice during transition to a conventional microbiota. To assess polygenic impact on development of colitis, p110δ(D910A/D910A) mice were backcrossed to IL-10(-/-) mice. RESULTS: A mild spontaneous colitis was shown in PI3K p110δ(D910A/D910A) mice at 8 weeks, with inflammation increasing with age. An inflammatory mucosal and systemic cytokine profile was characterized by expression of IL-12/23. In PI3K p110δ(D910A/D910A) macrophages, augmented toll-like receptor signaling and defective bactericidal activity were observed. Consistent with an important homeostatic role for PI3K p110δ, wild-type mice raised in a germ-free environment markedly up-regulated colonic PI3K p110δ expression with the introduction of the enteric microbiota; however, colitis-prone IL-10(-/-) mice did not. Moreover, PI3K p110δ(D910A/D910A) mice crossed to IL-10(-/-) mice developed severe colitis at an early age. CONCLUSIONS: This study describes a novel model of experimental colitis that highlights the importance of PI3K p110δ in maintaining mucosal homeostasis and could provide insight into the pathogenesis of human inflammatory bowel disease.


Assuntos
Colite/patologia , Expressão Gênica , Imunidade Inata/fisiologia , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinase/genética , RNA/genética , Animais , Doença Crônica , Colite/imunologia , Colite/metabolismo , Colo/imunologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/biossíntese , Fosfatidilinositol 3-Quinase/deficiência , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA