Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone ; 95: 91-101, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27856358

RESUMO

The ionotropic ATP-gated P2X7 receptor (P2X7R) is involved in the regulation of many physiological functions including bone metabolism. Several studies on osteoblasts from rodents and human osteoblast-like cell lines have addressed the expression and function of P2X7R on these bone-forming cells however; its role in human primary osteoblasts has not yet been reported. The aim of this study was to assess the expression of the P2X7R in bone marrow-derived stromal cells and in primary human trabecular osteoblasts and to determine the function in bone formation and cell signaling. We report that osteoblasts derived from human trabecular explants express a functional P2X7R capable of agonist-induced increase in intracellular calcium concentration and a positive permeability to fluorescent dyes. These osteoblasts are fully differentiated cells with alkaline phosphatase activity and the ability to form mineralized nodules. We show that the transcriptional regulation of osteoblastic markers can be modulated by P2X7R activity or blockade thereby influencing the differentiation, proliferation and bone matrix formation by these primary human osteoblasts. Finally, we demonstrate that the P2X7R is involved in propagation of mechanically-induced intercellular signaling in addition to the known mechanisms involving calcium signaling via P2Y2 receptors and gap junction.


Assuntos
Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Calcificação Fisiológica , Sinalização do Cálcio , Osso Esponjoso/citologia , Morte Celular , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células Estromais/citologia , Células Estromais/metabolismo
2.
J Clin Invest ; 122(10): 3579-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22996695

RESUMO

The adenosine diphosphate (ADP) receptor P2RY12 (purinergic receptor P2Y, G protein coupled, 12) plays a critical role in platelet aggregation, and P2RY12 inhibitors are used clinically to prevent cardiac and cerebral thrombotic events. Extracellular ADP has also been shown to increase osteoclast (OC) activity, but the role of P2RY12 in OC biology is unknown. Here, we examined the role of mouse P2RY12 in OC function. Mice lacking P2ry12 had decreased OC activity and were partially protected from age-associated bone loss. P2ry12-/- OCs exhibited intact differentiation markers, but diminished resorptive function. Extracellular ADP enhanced OC adhesion and resorptive activity of WT, but not P2ry12-/-, OCs. In platelets, ADP stimulation of P2RY12 resulted in GTPase Ras-related protein (RAP1) activation and subsequent αIIbß3 integrin activation. Likewise, we found that ADP stimulation induced RAP1 activation in WT and integrin ß3 gene knockout (Itgb3-/-) OCs, but its effects were substantially blunted in P2ry12-/- OCs. In vivo, P2ry12-/- mice were partially protected from pathologic bone loss associated with serum transfer arthritis, tumor growth in bone, and ovariectomy-induced osteoporosis: all conditions associated with increased extracellular ADP. Finally, mice treated with the clinical inhibitor of P2RY12, clopidogrel, were protected from pathologic osteolysis. These results demonstrate that P2RY12 is the primary ADP receptor in OCs and suggest that P2RY12 inhibition is a potential therapeutic target for pathologic bone loss.


Assuntos
Difosfato de Adenosina/fisiologia , Remodelação Óssea/fisiologia , Osteoclastos/fisiologia , Osteoporose/fisiopatologia , Receptores Purinérgicos P2Y12/fisiologia , Animais , Artrite Experimental/complicações , Neoplasias Ósseas/complicações , Neoplasias Ósseas/secundário , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/fisiopatologia , Carcinoma/complicações , Carcinoma/secundário , Adesão Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Clopidogrel , Ativação Enzimática/efeitos dos fármacos , Feminino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/etiologia , Osteoporose/prevenção & controle , Ovariectomia , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Receptores Purinérgicos P2Y12/deficiência , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Receptores Purinérgicos P2Y12/genética , Organismos Livres de Patógenos Específicos , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia , Ticlopidina/uso terapêutico , Proteínas rap1 de Ligação ao GTP/efeitos dos fármacos
3.
Int Urol Nephrol ; 44(3): 983-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21437594

RESUMO

A 68-year old Caucasian male with a past medical history of human immunodeficiency virus (HIV) infection presented with acute oliguric renal failure and maculopapular rash. Renal biopsy demonstrated extensive foot process effacement as well as confluent small subepithelial electron-dense deposits, which is diagnostic of membranous glomerulonephritis. Subsequent serological tests showed venereal disease research laboratory test was positive in both serum and cerebral spinal fluid. Following penicillin treatment, the patient's creatinine returned to baseline 4 weeks later. Secondary membranous glomerulonephritis caused by syphilis in patients with HIV is discussed.


Assuntos
Glomerulonefrite Membranosa/microbiologia , Infecções por HIV/complicações , Neurossífilis/complicações , Idoso , Antibacterianos/uso terapêutico , Humanos , Masculino , Neurossífilis/diagnóstico , Neurossífilis/tratamento farmacológico , Penicilina G/uso terapêutico , Treponema pallidum
4.
J Cell Sci ; 122(Pt 4): 505-12, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19174470

RESUMO

Eukaryotic plasma membranes assemble actin filaments within seconds of activation of many receptors, especially during chemotaxis. Here, serum or sphingosine-1-phosphate stimulation of J774 and RAW macrophages released ADP within seconds into the extracellular medium, along with an adenylate kinase activity that converted ADP to ATP. ATP then activated the P2X7 receptor (P2X7R) that was necessary for a peak of plasma-membrane actin assembly within 5 to 10 seconds in P2X7R-expressing J774, RAW and primary macrophages. Neither actin assembly nor characteristic P2X7R channel activity was seen in response to ATP in P2X7R-knockout macrophages, as detected by patch-clamp analysis. Since P2X7R has been shown previously to form a macromolecular complex with actin we propose that it is involved in the membrane assembly of actin. Our data reveal a surprisingly rapid and complex relay of signaling and externalization events that precede and control actin assembly induced by sphingosine-1-phosphate. The overall model we present is strongly supported by the data presented in the accompanying paper that focuses on latex bead phagosomes.


Assuntos
Actinas/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores Purinérgicos P2/metabolismo , Esfingosina/análogos & derivados , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Animais , Transporte Biológico , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2X7 , Transdução de Sinais , Esfingosina/metabolismo
5.
Cell Calcium ; 43(5): 457-68, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17825906

RESUMO

Reactive oxygen species (ROS) have long been considered as toxic by-products of aerobic metabolism and appear involved in the pathogenesis of degenerative diseases. The physiological role of ROS as second messengers in cell signal transduction is, on the other hand, increasingly recognized. Here we investigated the effects of H(2)O(2) and extracellular nucleotides on calcium signalling in four osteoblastic cell lines. In the highly differentiated HOBIT cells, sensitive to nanomolar concentrations of ADP and UTP, millimolar H(2)O(2) induced oscillatory increases of the cytosolic calcium concentration followed by a steady and sustained calcium increase. Long lasting rhythmic calcium activity was induced by micromolar H(2)O(2) doses. The H(2)O(2)-induced calcium signals, due to both release from intracellular stores and influx from the extracellular milieu, were totally prevented by incubating the cells with the P2 receptor antagonist suramin or with the ATP/ADP hydrolyzing enzyme apyrase. In the osteosarcoma SaOS-2 cells micromolar H(2)O(2) failed to evoke calcium signals and millimolar H(2)O(2) induced a slowly developing calcium influx which was unaffected by suramin and apyrase. These cells responded to micromolar concentrations of ATP and ADP, but were largely insensitive to UTP. ROS 17/2.8 osteosarcoma cells were totally insensitive to ATP, ADP and UTP in keeping with the evidence that these cells lack functional purinergic receptors. In these cells, H(2)O(2) up to 1mM did not increase the cytosolic calcium concentration. In ROS/P2Y(2) cells, stably expressing the P2Y(2) receptor, spontaneous calcium oscillations were observed in 38% of the population and nanomolar concentration of extracellular ATP or UTP activated oscillations in quiescent cells. Spontaneous calcium signals were inhibited by suramin and apyrase. In these cells H(2)O(2) induced oscillatory calcium activity that was blocked by suramin and apyrase. The sensitivity of ROS/P2Y(2) cells to UTP decreased significantly in the presence of DTT, which was effective also in inhibiting spontaneous calcium oscillations. On the other hand, the membrane-impermeant thiol oxidant DTNB induced calcium oscillations that were inhibited by incubating the cells with suramin or apyrase. Since peroxide did not increase extracellular ATP in these cell lines, we propose that, in osteoblasts, mild oxidative conditions could activate purinergic signalling through the sensitization of P2Y(2) receptor.


Assuntos
Nucleotídeos de Adenina/farmacologia , Sinalização do Cálcio , Peróxido de Hidrogênio/farmacologia , Osteoblastos/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Osteoblastos/efeitos dos fármacos , Receptores Purinérgicos P2Y2 , Uridina Trifosfato/farmacologia
6.
Cell Calcium ; 39(5): 435-44, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16545868

RESUMO

Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine activation of P2Y receptors, and the other requires gap junctional communication. In the current work we ask whether long-term culture of osteoblast-like cells affects the propagation of ICW by these two mechanisms. Human osteoblast-like cells were isolated from bone marrow. Mechanically induced ICW were assessed by video imaging of Fura-2 loaded cells after 1, 2 and 4 months culture. The P2Y2 receptor and the gap junction protein Cx43 were assessed by Western blot and real-time PCR. In resting conditions, P2Y mediated ICW prevailed and spread rapidly to about 13 cells. P2Y receptor desensitization by ATP disclosed gap junction-mediated ICW which diffused more slowly and involved not more than five to six cells. After 2 months in culture, ICW appeared slower and wave propagation was much less inhibited by P2Y desensitization, suggesting an increase in gap junction-mediated ICW. After 4 months in culture cells still responded to addition of ATP, but P2Y desensitization did not inhibit ICW propagation. Our data indicate that the relative role of P2Y-mediated and gap junction-mediated ICW changes during osteoblast differentiation in vitro. In less differentiated cells, P2Y-mediated ICW predominate, but as cells differentiate in culture, gap-junction-mediated ICW become more prominent. These results suggest that P2Y receptor-mediated and gap junction-mediated mechanisms of intercellular calcium signaling may play different roles during differentiation of bone-forming cells.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Osteoblastos/metabolismo , Adulto , Fosfatase Alcalina/metabolismo , Medula Óssea/metabolismo , Sinalização do Cálcio/fisiologia , Comunicação Celular , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Conexina 43/metabolismo , Conexinas/metabolismo , Meios de Cultura , Feminino , Junções Comunicantes/metabolismo , Humanos , Masculino , Osteoblastos/citologia , RNA Mensageiro/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2
7.
J Cell Sci ; 118(Pt 10): 2167-76, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15855237

RESUMO

ZO-1 is the major connexin-interacting protein in ROS 17/2.8 (ROS) osteoblastic cells. We examined the role of ZO-1 in Cx43-mediated gap junction formation and function in ROS cells that expressed the connexin-interacting fragment of ZO-1 (ROS/ZO-1dn) cells. Expression of this ZO-1(7-444) fusion protein in ROS cells disrupted the Cx43/ZO-1 interaction and decreased dye transfer by 85%, although Cx43 was retained on the plasma membrane as assessed by surface biotinylation. Fractionation of lysates derived from ROS/ZO-1dn cells on a 5-30% sucrose flotation gradient showed that 40% of the Cx43 floated into these sucrose gradients, whereas none of the Cx43 in ROS cell lysates entered the gradients, suggesting that more Cx43 is associated with lipid rafts in the transfected ROS cells than in lysates derived from untransfected ROS cells. In contrast to the ROS/ZO-1dn cells, ROS cells that over-expressed ZO-1 protein (ROS/ZO-1myc cells) exhibited increased gap junctional permeability and appositional membrane staining for Cx43. These data demonstrate that ZO-1 regulates Cx43-mediated gap junctional communication in osteoblastic cells and alters the membrane localization of Cx43. They suggest that ZO-1-mediated delivery of Cx43 from a lipid raft domain to gap junctional plaques may be an important regulatory step in gap junction formation.


Assuntos
Membrana Celular/metabolismo , Conexina 43/fisiologia , Proteínas de Membrana/fisiologia , Osteoblastos/fisiologia , Fosfoproteínas/fisiologia , Animais , Caderinas/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Conexina 43/metabolismo , Junções Comunicantes/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Osteoblastos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteína da Zônula de Oclusão-1
8.
Am J Physiol Cell Physiol ; 287(2): C403-12, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15070812

RESUMO

Multinucleated giant cells derive from fusion of precursor cells of the macrophage lineage. It has been proposed that the purinoreceptor P2X(7) is involved in this fusion process. Prolonged exposure of macrophages to ATP, the ligand for P2X(7), induces the formation of plasma membrane pores and eventual cell death. We took advantage of this cytolytic property to select RAW 264.7 (RAW) cells that lacked P2X(7) function by maintaining them in ATP (RAW ATP-R cells). RAW ATP-R cells failed to fuse to form multinucleated osteoclasts in response to receptor activator nuclear factor-kappaB ligand, although they did become positive for the osteoclast marker enzyme tartrate-resistant acid phosphatase, and upregulated expression of other osteoclast marker genes. RAW ATP-R cells and wild-type RAW cells expressed similar amounts of P2X(7) protein, but little P2X(7) was present on the surface of RAW ATP-R cells. After ATP was removed from the medium of RAW ATP-R cells, the cells reexpressed P2X(7) on the cell surface, regained sensitivity to ATP, and formed multinucleated osteoclasts. These results suggest that P2X(7) or another protein that is downregulated in concert with P2X(7) is involved either in the mechanics of cell fusion to form osteoclasts or in a signaling pathway proximal to this event. These results also suggest that P2X(7) may be regulated by ligand-mediated internalization and that extracellular ATP may regulate the formation of osteoclasts and other multinucleated giant cells.


Assuntos
Trifosfato de Adenosina/farmacologia , Macrófagos/citologia , Osteoclastos/citologia , Fosfato de Piridoxal/análogos & derivados , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Espaço Extracelular/metabolismo , Imunofluorescência , Células Gigantes/citologia , Células Gigantes/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Fosfato de Piridoxal/farmacologia , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Receptores Purinérgicos P2X7 , Regulação para Cima
9.
Proteomics ; 3(7): 1128-44, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12872214

RESUMO

Systematic parallel analysis of the phosphorylation status of networks of interacting proteins involved in the regulatory circuitry of cells and tissues is certain to drive research in the post-genomics era for many years to come. Reversible protein phosphorylation plays a critical regulatory role in a multitude of cellular processes, including alterations in signal transduction pathways related to oncogene and tumor suppressor gene products in cancer. While fluorescence detection methods are likely to offer the best solution to global protein quantitation in proteomics, to date, there has been no satisfactory method for the specific and reversible fluorescent detection of gel-separated phosphoproteins from complex samples. The newly developed Pro-Q Diamond phosphoprotein dye technology is suitable for the fluorescent detection of phosphoserine-, phosphothreonine-, and phosphotyrosine-containing proteins directly in sodium dodecyl sulfate (SDS)-polyacrylamide gels and two-dimensional (2-D) gels. Additionally, the technology is appropriate for the determination of protein kinase and phosphatase substrate preference. Other macromolecules, such as DNA, RNA, and sulfated glycans, fail to be detected with Pro-Q Diamond dye. The staining procedure is rapid, simple to perform, readily reversible and fully compatible with modern microchemical analysis procedures, such as matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Pro-Q Diamond dye technology can detect as little as 1-2 ng of beta-casein, a pentaphosphorylated protein, and 8 ng of pepsin, a monophosphorylated protein. Fluorescence signal intensity correlates with the number of phosphorylated residues on the protein. Through combination of Pro-Q Diamond phosphoprotein stain with SYPRO(R) Ruby protein gel stain, Multiplexed Proteomics technology permits quantitative, dichromatic fluorescence detection of proteins in 2-D gels. This evolving discovery platform allows the parallel determination of protein expression level changes and altered post-translational modification patterns within a single 2-D gel experiment. The linear responses of the fluorescence dyes utilized, allow rigorous quantitation of changes over an unprecedented 500-1000-fold concentration range.


Assuntos
Fosfoproteínas/química , Proteoma/química , Animais , Western Blotting , Catálise , Bovinos , Galinhas , DNA/química , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes/farmacologia , Proteínas de Choque Térmico HSP90/química , Cinética , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/química , Fosfatos/química , Fosforilação , Proteína Quinase C/química , Proteína Quinase C-alfa , Proteínas/química , RNA/química , Proteínas Recombinantes/química , Transdução de Sinais , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos
10.
Proteomics ; 3(7): 1244-55, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12872225

RESUMO

Ultrasensitive detection of minute amounts of phosphorylated proteins and peptides is a key requirement for unraveling many of the most important signal transduction pathways in mammalian systems. Protein microarrays are potentially useful tools for sensitive screening of global protein expression and post-translational modifications, such as phosphorylation. However, the analysis of signaling pathways has been hampered by a lack of reagents capable of conveniently detecting the targets of protein kinases. Historically, phosphorylation detection methods have relied upon either radioisotopes ((gamma-(32)P)ATP(gamma-(33)P)ATP labeling) or phosphoamino acid-selective antibodies. Both of these methods suffer from relatively well-known shortcomings. In this study, a small molecule fluorophore phosphosensor technology is described, referred to as Pro-Q Diamond dye, which is capable of ultrasensitive global detection and quantitation of phosphorylated amino acid residues in peptides and proteins displayed on microarrays. The utility of the fluorescent Pro-Q Diamond phosphosensor dye technology is demonstrated using phosphoproteins and phosphopeptides as well as with protein kinase reactions performed in miniaturized microarray assay format. Instead of applying a phosphoamino acid-selective antibody labeled with a fluorescent or enzymatic tag for detection, a small, fluorescent probe is employed as a universal sensor of phosphorylation status. The detection limit for phosphoproteins on a variety of different commercially available protein array substrates was found to be 312-625 fg, depending upon the number of phosphate residues. Characterization of the enzymatic phosphorylation of immobilized peptide targets with Pro-Q Diamond dye readily permits differentiation between specific and non-specific peptide labeling at picogram to subpicogram levels of detection sensitivity.


Assuntos
Corantes Fluorescentes/farmacologia , Análise Serial de Proteínas/métodos , Proteínas Quinases/química , Relação Dose-Resposta a Droga , Vidro , Oligopeptídeos/química , Peptídeos , Fosfoproteínas/química , Fosforilação , Processamento de Proteína Pós-Traducional , Tirosina/química
11.
Comb Chem High Throughput Screen ; 6(4): 331-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12769676

RESUMO

Protein kinases represent one of the largest families of regulatory enzymes, with more than 2,000 of them being encoded for by the human genome. Many cellular processes are regulated by the reversible phosphorylation of proteins and upwards of 30% of the proteins comprising the eukaryotic proteome are likely to be phosphorylated at some point during their existence. In the past, analysis of global protein phosphorylation has been accomplished through radiolabelling of samples with inorganic (32P or [gamma-32)P] ATP. The approach is limited to specimens amenable to radiolabelling and poses certain safety and disposal problems. Alternatively, immunodetection with antibodies to the common phosphoamino acids may be employed, but the antibodies are relatively expensive and exhibit limited specificity and a certain degree of cross-reactivity. Pro-Q Diamond dye is a new fluorescent phosphosensor technology suitable for the detection of phosphoserine-, phosphothreonine- and phosphotyrosine-containing proteins directly in isoelectric focusing gels, SDS-polyacrylamide gels and two-dimensional gels. Additionally, the technology is appropriate for the detection of phosphoproteins or phosphopeptides arrayed on protein chips or affixed to beads. Dye-stained proteins and peptides can be excited with a laser-based light source of 532 or 543 nm or with a xenon-arc lamp-based system equipped with appropriate band pass filters. Alternatively, ultraviolet light of about 302 nm may be employed, providing that sufficiently long exposure times are used to collect the fluorescence signal. Pro-Q Diamond dye emits maximally at approximately 580 nm. The fluorescence-based detection technology is easy to conduct, cost effective and allows rapid large-scale screening of protein and peptide phosphorylation in a variety of solid-phase assay formats.


Assuntos
Corantes Fluorescentes/química , Peptídeos/metabolismo , Fosfopeptídeos/análise , Fosfoproteínas/análise , Proteínas/metabolismo , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes/metabolismo , Microesferas , Peptídeos/química , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Análise Serial de Proteínas , Proteínas/química , Espectrometria de Fluorescência
12.
J Biol Chem ; 277(50): 48724-9, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12376532

RESUMO

We previously found that oscillatory fluid flow activated MC3T3-E1 osteoblastic cell Ca(2+)(i) mobilization via the inositol 1,4,5-trisphosphate pathway in the presence of 2% fetal bovine serum (FBS). However, the molecular mechanism of fluid flow-induced Ca(2+)(i) mobilization is unknown. In this study, we first demonstrated that oscillatory fluid flow in the absence of FBS failed to increase [Ca(2+)](i) in MC3T3-E1 cells. Apyrase (10 units/ml), which rapidly hydrolyzes 5' nucleotide triphosphates to monosphophates, prevented the fluid flow induced increases in [Ca(2+)](i) in the presence of FBS. Adding ATP or UTP to flow medium without FBS restored the ability of fluid flow to increase [Ca(2+)](i), suggesting that ATP or UTP may mediate the effect of fluid flow on [Ca(2+)](i). Furthermore, adenosine, ADP, UDP, or adenosine 5'-O-(3-thiotriphosphate) did not induce Ca(2+)(i) mobilization under oscillatory fluid flow without FBS. Pyridoxal phosphate 6-azophenyl-2,4'-disulfonic acid, an antagonist of P2X purinoceptors, did not alter the effect of fluid flow on the Ca(2+)(i) response, whereas pertussis toxin, a G(i/o)-protein inhibitor, inhibited fluid flow-induced increases in [Ca(2+)](i) in the presence of 2% FBS. Thus, by the process of elimination, our data suggest that P2Y purinoceptors (P2Y2 or P2Y4) are involved in the Ca(2+)(i) response to fluid flow. Finally, a decreased percentage of MC3T3-E1 osteoblastic cells treated with P2Y2 antisense oligodeoxynucleotides responded to fluid flow with an increase in [Ca(2+)](i), and an increased percentage of ROS 17/2.8 cells, which do not normally express P2Y2 purinoceptors, transfected with P2Y2 purinoceptors responded to fluid flow in the presence of 2% FBS, confirming that P2Y2 purinoceptors are responsible for oscillatory fluid flow-induced Ca(2+)(i) mobilization. Our findings shed new light of the molecular mechanisms responsible for oscillatory fluid flow-induced Ca(2+)(i) mobilization in osteoblastic cells.


Assuntos
Cálcio/metabolismo , Osteoblastos/metabolismo , Receptores Purinérgicos P2/metabolismo , Células 3T3 , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Camundongos , Oligonucleotídeos Antissenso , Receptores Purinérgicos P2Y2 , Uridina Trifosfato/metabolismo
13.
J Biol Chem ; 277(9): 7574-80, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11756404

RESUMO

Signaling between osteoblasts and osteoclasts is important in bone homeostasis. We previously showed that human osteoblasts propagate intercellular calcium signals via two mechanisms: autocrine activation of P2Y receptors, and gap junctional communication. In the current work we identified mechanically induced intercellular calcium signaling between osteoblasts and osteoclasts and among osteoclasts. Intercellular calcium responses in osteoclasts required P2 receptor activation but not gap junctional communication. Pharmacological studies and reverse transcriptase-PCR amplification demonstrated that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling to osteoclasts. Thus these studies show that calcium signaling between osteoblasts and osteoclasts occurs via activation of P2 receptors, but that different families of P2 receptors are required for calcium signaling in these two cell types. Intercellular calcium signaling among bone cells is therefore amenable to pharmacological manipulation that will specifically affect only bone-forming or bone-resorbing cells. P2 receptors may be important drug targets for the modulation of bone turnover.


Assuntos
Cálcio/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Adulto , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteínas de Transporte/metabolismo , DNA Complementar/metabolismo , Humanos , Imuno-Histoquímica , Fator Estimulador de Colônias de Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal , Ligação Proteica , Ligante RANK , RNA Mensageiro/metabolismo , Receptor Ativador de Fator Nuclear kappa-B , Receptores Purinérgicos P2X7 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA