Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 110011, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868181

RESUMO

Combinatorial signaling by proinflammatory cytokines synergizes to exacerbate toxicity to cells and tissue injury during acute infections. To explore synergism at the gene-regulatory level, we investigated the dynamics of transcription and chromatin signaling in response to dual cytokines by integrating nascent RNA imaging mass spectrometry, RNA sequencing, amplification-independent mRNA quantification, assay for transposase-accessible chromatin using sequencing (ATAC-seq), and transcription factor profiling. Costimulation with interferon-gamma (IFNγ) and tumor necrosis factor alpha (TNFα) synergistically induced a small subset of genes, including the chemokines CXCL9, -10, and -11. Gene induction coincided with increased chromatin accessibility at non-coding regions enriched for p65 and STAT1 binding sites. To discover coactivator dependencies, we conducted a targeted chemogenomic screen of transcriptional inhibitors followed by modeling of inhibitor dose-response curves. These results identified high efficacy of either p300/CREB-binding protein (CBP) or bromodomain and extra-terminal (BET) bromodomain inhibitors to disrupt induction of synergy genes. Combination p300/CBP and BET bromodomain inhibition at half-maximal inhibitory concentrations (subIC50) synergistically abrogated IFNγ/TNFα-induced chemokine gene and protein levels.

2.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681409

RESUMO

The identity and origin of the stem/progenitor cells for adult joint cartilage repair remain unknown, impeding therapeutic development. Simulating the common therapeutic modality for cartilage repair in humans, i.e., full-thickness microfracture joint surgery, we combined the mouse full-thickness injury model with lineage tracing and identified a distinct skeletal progenitor cell type enabling long-term (beyond 7 days after injury) articular cartilage repair in vivo. Deriving from a population with active Prg4 expression in adulthood while lacking aggrecan expression, these progenitors proliferate, differentiate to express aggrecan and type II collagen, and predominate in long-term articular cartilage wounds, where they represent the principal repair progenitors in situ under native repair conditions without cellular transplantation. They originate outside the adult bone marrow or superficial zone articular cartilage. These findings have implications for skeletal biology and regenerative medicine for joint injury repair.


Assuntos
Cartilagem Articular , Adulto , Humanos , Animais , Camundongos , Agrecanas , Colágeno Tipo II , Modelos Animais de Doenças , Células-Tronco , Proteoglicanas
3.
Nat Protoc ; 16(4): 1995-2022, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33627842

RESUMO

Quantification of cellular proliferation in humans is important for understanding biology and responses to injury and disease. However, existing methods require administration of tracers that cannot be ethically administered in humans. We present a protocol for the direct quantification of cellular proliferation in human hearts. The protocol involves administration of non-radioactive, non-toxic stable isotope 15Nitrogen-enriched thymidine (15N-thymidine), which is incorporated into DNA during S-phase, in infants with tetralogy of Fallot, a common form of congenital heart disease. Infants with tetralogy of Fallot undergo surgical repair, which requires the removal of pieces of myocardium that would otherwise be discarded. This protocol allows for the quantification of cardiomyocyte proliferation in this discarded tissue. We quantitatively analyzed the incorporation of 15N-thymidine with multi-isotope imaging spectrometry (MIMS) at a sub-nuclear resolution, which we combined with correlative confocal microscopy to quantify formation of binucleated cardiomyocytes and cardiomyocytes with polyploid nuclei. The entire protocol spans 3-8 months, which is dependent on the timing of surgical repair, and 3-4.5 researcher days. This protocol could be adapted to study cellular proliferation in a variety of human tissues.


Assuntos
Divisão Celular , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Miócitos Cardíacos/citologia , Timidina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Feminino , Feto/citologia , Humanos , Imageamento Tridimensional , Lactente , Leucócitos/citologia , Miocárdio/citologia , Isótopos de Nitrogênio/urina , Ploidias , Gravidez , Sarcômeros/metabolismo , Tetralogia de Fallot/patologia
4.
Mol Metab ; 42: 101082, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32992039

RESUMO

OBJECTIVE: The human adaptive fasting response enables survival during periods of caloric deprivation. A crucial component of the fasting response is the shift from glucose metabolism to utilization of lipids, underscoring the importance of adipose tissue as the central lipid-storing organ. The objective of this study was to investigate the response of adipose tissue to a prolonged fast in humans. METHODS: We performed RNA sequencing of subcutaneous adipose tissue samples longitudinally collected during a 10-day, 0-calorie fast in humans. We further investigated observed transcriptional signatures utilizing cultured human monocytes and Thp1 cells. We examined the cellularity of adipose tissue biopsies with transmission electron microscopy and tested for associated changes in relevant inflammatory mediators in the systemic circulation by ELISA assays of longitudinally collected blood samples. RESULTS: Coincident with the expected shift away from glucose utilization and lipid storage, we demonstrated downregulation of pathways related to glycolysis, oxidative phosphorylation, and lipogenesis. The canonical lipolysis pathway was also downregulated, whereas fasting drove alternative lysosomal paths to lipid digestion. Unexpectedly, the dominant induced pathways were associated with immunity and inflammation, although this only became evident at the 10-day time point. Among the most augmented transcripts were those associated with macrophage identity and function, such as members of the erythroblast transformation-specific (ETS) transcription factor family. Key components of the macrophage transcriptional signal in fasting adipose tissue were recapitulated with induced expression of two of the ETS transcription factors via cultured macrophages, SPIC and SPI1. The inflammatory signal was further reflected by an increase in systemic inflammatory mediators. CONCLUSIONS: Collectively, this study demonstrates an unexpected role of metabolic inflammation in the human adaptive fasting response.


Assuntos
Tecido Adiposo/metabolismo , Jejum/metabolismo , Inflamação/metabolismo , Tecido Adiposo/imunologia , Adulto , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Jejum/fisiologia , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/imunologia , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/fisiologia , Lipogênese , Lipólise/fisiologia , Macrófagos , Masculino , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo
5.
iScience ; 23(8): 101355, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32712466

RESUMO

Malignant tumors exhibit high degrees of genomic heterogeneity at the cellular level, leading to the view that subpopulations of tumor cells drive growth and treatment resistance. To examine the degree to which tumors also exhibit metabolic heterogeneity at the level of individual cells, we employed multi-isotope imaging mass spectrometry (MIMS) to quantify utilization of stable isotopes of glucose and glutamine along with a label for cell division. Mouse models of melanoma and malignant peripheral nerve sheath tumors (MPNSTs) exhibited striking heterogeneity of substrate utilization, evident in both proliferating and non-proliferating cells. We identified a correlation between metabolic heterogeneity, proliferation, and therapeutic resistance. Heterogeneity in metabolic substrate usage as revealed by incorporation of glucose and glutamine tracers is thus a marker for tumor proliferation. Collectively, our data demonstrate that MIMS provides a powerful tool with which to dissect metabolic functions of individual cells within the native tumor environment.

6.
Sci Transl Med ; 11(513)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597755

RESUMO

One million patients with congenital heart disease (CHD) live in the United States. They have a lifelong risk of developing heart failure. Current concepts do not sufficiently address mechanisms of heart failure development specifically for these patients. Here, analysis of heart tissue from an infant with tetralogy of Fallot with pulmonary stenosis (ToF/PS) labeled with isotope-tagged thymidine demonstrated that cardiomyocyte cytokinesis failure is increased in this common form of CHD. We used single-cell transcriptional profiling to discover that the underlying mechanism of cytokinesis failure is repression of the cytokinesis gene ECT2, downstream of ß-adrenergic receptors (ß-ARs). Inactivation of the ß-AR genes and administration of the ß-blocker propranolol increased cardiomyocyte division in neonatal mice, which increased the number of cardiomyocytes (endowment) and conferred benefit after myocardial infarction in adults. Propranolol enabled the division of ToF/PS cardiomyocytes in vitro. These results suggest that ß-blockers could be evaluated for increasing cardiomyocyte division in patients with ToF/PS and other types of CHD.


Assuntos
Citocinese/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Propranolol/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Ratos
7.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348863

RESUMO

The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap-/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap-/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.


Assuntos
Glucose/metabolismo , Fígado/embriologia , Nucleotídeos/biossíntese , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Nucleotídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Transativadores/genética , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
J Clin Invest ; 128(11): 4898-4911, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277475

RESUMO

Adipocyte turnover in adulthood is low, suggesting that the cellular source of new adipocytes, the adipocyte progenitor (AP), resides in a state of relative quiescence. Yet the core transcriptional regulatory circuitry (CRC) responsible for establishing a quiescent state and the physiological significance of AP quiescence are incompletely understood. Here, we integrate transcriptomic data with maps of accessible chromatin in primary APs, implicating the orphan nuclear receptor NR4A1 in AP cell-state regulation. NR4A1 gain and loss of function in APs ex vivo decreased and enhanced adipogenesis, respectively. Adipose tissue of Nr4a1-/- mice demonstrated higher proliferative and adipogenic capacity compared with that of WT mice. Transplantation of Nr4a1-/- APs into the subcutaneous adipose tissue of WT obese recipients improved metrics of glucose homeostasis relative to administration of WT APs. Collectively, these data identify NR4A1 as a previously unrecognized constitutive regulator of AP quiescence and suggest that augmentation of adipose tissue plasticity may attenuate negative metabolic sequelae of obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Obesidade/metabolismo , Células-Tronco/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Camundongos , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Células-Tronco/patologia
9.
Circulation ; 128(2): 152-61, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23757312

RESUMO

BACKGROUND: Doxorubicin (DOXO) is an effective anthracycline chemotherapeutic, but its use is limited by cumulative dose-dependent cardiotoxicity. Neuregulin-1ß is an ErbB receptor family ligand that is effective against DOXO-induced cardiomyopathy in experimental models but is also proneoplastic. We previously showed that an engineered bivalent neuregulin-1ß (NN) has reduced proneoplastic potential in comparison with the epidermal growth factor-like domain of neuregulin-1ß (NRG), an effect mediated by receptor biasing toward ErbB3 homotypic interactions uncommonly formed by native neuregulin-1ß. Here, we hypothesized that a newly formulated, covalent NN would be cardioprotective with reduced proneoplastic effects in comparison with NRG. METHODS AND RESULTS: NN was expressed as a maltose-binding protein fusion in Escherichia coli. As established previously, NN stimulated antineoplastic or cytostatic signaling and phenotype in cancer cells, whereas NRG stimulated proneoplastic signaling and phenotype. In neonatal rat cardiomyocytes, NN and NRG induced similar downstream signaling. NN, like NRG, attenuated the double-stranded DNA breaks associated with DOXO exposure in neonatal rat cardiomyocytes and human cardiomyocytes derived from induced pluripotent stem cells. NN treatment significantly attenuated DOXO-induced decrease in fractional shortening as measured by blinded echocardiography in mice in a chronic cardiomyopathy model (57.7±0.6% versus 50.9±2.6%, P=0.004), whereas native NRG had no significant effect (49.4±3.7% versus 50.9±2.6%, P=0.813). CONCLUSIONS: NN is a cardioprotective agent that promotes cardiomyocyte survival and improves cardiac function in DOXO-induced cardiotoxicity. Given the reduced proneoplastic potential of NN versus NRG, NN has translational potential for cardioprotection in patients with cancer receiving anthracyclines.


Assuntos
Cardiotônicos/farmacologia , Engenharia Química/métodos , Doxorrubicina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Neuregulina-1/genética , Neuregulina-1/farmacologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Cardiotoxinas/antagonistas & inibidores , Cardiotoxinas/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Doxorrubicina/antagonistas & inibidores , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Distribuição Aleatória , Ratos , Método Simples-Cego
10.
Nature ; 493(7432): 433-6, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23222518

RESUMO

Although recent studies have revealed that heart cells are generated in adult mammals, the frequency of generation and the source of new heart cells are not yet known. Some studies suggest a high rate of stem cell activity with differentiation of progenitors to cardiomyocytes. Other studies suggest that new cardiomyocytes are born at a very low rate, and that they may be derived from the division of pre-existing cardiomyocytes. Here we show, by combining two different pulse-chase approaches--genetic fate-mapping with stable isotope labelling, and multi-isotope imaging mass spectrometry--that the genesis of cardiomyocytes occurs at a low rate by the division of pre-existing cardiomyocytes during normal ageing, a process that increases adjacent to areas of myocardial injury. We found that cell cycle activity during normal ageing and after injury led to polyploidy and multinucleation, but also to new diploid, mononucleate cardiomyocytes. These data reveal pre-existing cardiomyocytes as the dominant source of cardiomyocyte replacement in normal mammalian myocardial homeostasis as well as after myocardial injury.


Assuntos
Coração , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração , Envelhecimento/fisiologia , Animais , Ciclo Celular , DNA/biossíntese , Feminino , Homeostase , Marcação por Isótopo , Masculino , Mamíferos , Espectrometria de Massas , Camundongos , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Poliploidia
11.
EMBO Mol Med ; 3(12): 701-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22095736

RESUMO

The death of cardiac myocytes diminishes the heart's pump function and is a major cause of heart failure, one of the dominant causes of death worldwide. Other than transplantation, there are no therapies that directly address the loss of cardiac myocytes, which explains the current excitement in cardiac regeneration. The field is evolving in two important directions. First, although endogenous mammalian cardiac regeneration clearly seems to decline rapidly after birth, it may still persist in adulthood. The careful elucidation of the cellular and molecular mechanisms of endogenous heart regeneration may therefore provide an opportunity for developing therapeutic interventions that amplify this process. Second, recent breakthroughs have enabled reprogramming of cells that were apparently terminally differentiated, either by dedifferentiation into pluripotent stem cells or by transdifferentiation into cardiac myocytes. These achievements challenge our conceptions of what is possible in terms of heart regeneration. In this review, we discuss the current status of research on cardiac regeneration, with a focus on the challenges that hold back therapeutic development.


Assuntos
Coração/fisiologia , Regeneração , Pesquisa Biomédica/tendências , Doenças Cardiovasculares/terapia , Humanos , Células Musculares/fisiologia , Células-Tronco/fisiologia
12.
Cell Stem Cell ; 8(4): 389-98, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474103

RESUMO

Cell therapy can improve cardiac function in animals and humans after injury, but the mechanism is unclear. We performed cell therapy experiments in genetically engineered mice that permanently express green fluorescent protein (GFP) only in cardiomyocytes after a pulse of 4-OH-tamoxifen. Myocardial infarction diluted the GFP(+) cardiomyocyte pool, indicating refreshment by non-GFP(+) progenitors. Cell therapy with bone marrow-derived c-kit(+) cells, but not mesenchymal stem cells, further diluted the GFP(+) pool, consistent with c-kit(+) cell-mediated augmentation of cardiomyocyte progenitor activity. This effect could not be explained by transdifferentiation to cardiomyocytes by exogenously delivered c-kit(+) cells or by cell fusion. Therapy with c-kit(+) cells but not mesenchymal stem cells improved cardiac function. These findings suggest that stimulation of endogenous cardiogenic progenitor activity is a critical mechanism of cardiac cell therapy.


Assuntos
Transplante de Medula Óssea , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Transdiferenciação Celular , Proteínas de Fluorescência Verde , Células-Tronco Mesenquimais , Camundongos , Mioblastos Cardíacos , Proteínas Proto-Oncogênicas c-kit
13.
Biomed Microdevices ; 12(6): 1027-41, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20661647

RESUMO

The advent of microfluidic technology allows control and interrogation of cell behavior by defining the local microenvironment with an assortment of biochemical and biophysical stimuli. Many approaches have been developed to create gradients of soluble factors, but the complexity of such systems or their inability to create defined and controllable chemical gradients has limited their widespread implementation. Here we describe a new microfluidic device which employs a parallel arrangement of wells and channels to create stable, linear concentration gradients in a gel region between a source and a sink well. Pressure gradients between the source and sink wells are dissipated through low resistance channels in parallel with the gel channel, thus minimizing the convection of solute in this region. We demonstrate the ability of the new device to quantitate chemotactic responses in a variety of cell types, yielding a complete profile of the migratory response and representing the total number of migrating cells and the distance each cell has migrated. Additionally we show the effect of concentration gradients of the morphogen Sonic hedgehog on the specification of differentiating neural progenitors in a 3-dimensional matrix.


Assuntos
Movimento Celular , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Becaplermina , Bovinos , Diferenciação Celular , Quimiotaxia , Capacitância Elétrica , Impedância Elétrica , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Células Jurkat , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Pressão , Proteínas Proto-Oncogênicas c-sis , Linfócitos T/citologia , Linfócitos T/metabolismo
14.
Cell Stem Cell ; 4(4): 277-8, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19341614

RESUMO

In this issue of Cell Stem Cell, Zaruba et al. (2009) describe a pharmacoregenerative strategy for myocardial infarction. Using G-CSF to release progenitors from bone marrow and protease inhibition to prevent degradation of the homing signal, SDF-1, the authors achieve increased recruitment to the heart and improved heart function.


Assuntos
Quimiocina CXCL12/metabolismo , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Fisiológica , Receptores CXCR4/metabolismo , Regeneração/fisiologia , Animais , Sistema Cardiovascular/metabolismo , Movimento Celular/fisiologia , Dipeptidil Peptidase 4/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Camundongos , Infarto do Miocárdio/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA