Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 10(1): 190-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25139677

RESUMO

Current methods for monitoring multiple intracellular metabolite levels in parallel are limited in sample throughput capabilities and analyte selectivity. This article presents a novel high-throughput method based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) for monitoring intracellular metabolite levels in fed-batch processes. The MALDI-TOF-MS method presented here is based on a new microarray sample target and allows the detection of nucleoside phosphates and various other metabolites using stable isotope labeled internal standards. With short sample preparation steps and thus high sample throughput capabilities, the method is suitable for monitoring mammalian cell cultures, such as antibody producing hybridoma cell lines in industrial environments. The method is capable of reducing the runtime of standard LC-UV methods to approximately 1 min per sample (including 10 technical replicates). Its performance is exemplarily demonstrated in an 8-day monitoring experiment of independently controlled fed-batches, containing an antibody producing mouse hybridoma cell culture. The monitoring profiles clearly confirmed differences between cultivation conditions. Hypothermia and hyperosmolarity were studied in four bioreactors, where hypothermia was found to have a positive effect on the longevity of the cell culture, whereas hyperosmolarity lead to an arrest of cell proliferation. The results are in good agreement with HPLC-UV cross validation experiments. Subsequent principal component analysis (PCA) clearly separates the different bioreactor conditions based on the measured mass spectral profiles. This method is not limited to any cell line and can be applied as a process analytical tool in biotechnological processes.


Assuntos
Técnicas de Cultura de Células/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Espaço Intracelular/metabolismo , Camundongos , Análise de Componente Principal
2.
Anal Biochem ; 447: 107-13, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269891

RESUMO

Nucleotides are key players in the central energy metabolism of cells. Here we show how to estimate the energy charge from cell lysates by direct negative ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using 9-aminoacridine as matrix. We found a high level of in-source decay of all the phosphorylated nucleotides, with some of them producing considerable amounts of adenosine-5'-diphosphate (ADP) fragment ions. We investigated the behavior of adenosine-5'-monophosphate (AMP), ADP, and adenosine-5'-triphosphate (ATP) as well as the cofactors coenzyme A (CoA) and acetyl-coenzyme A (ACoA) and nicotinamide adenine dinucleotides (NAD⁺ and NADH) in detail. In-source decay of these compounds depends strongly on the applied laser power and on the extraction pulse delay. At standard instrument settings, the 9-aminoacridine (9-AA) matrix resulted in a much higher in-source decay compared with 2,4,6-trihydroxyacetophenone (2,4,6-THAP). By adding ¹³C-labeled ATP to a cell lysate, we were able to determine the degree of in-source decay during an experiment. Analyzing a cell extract of the monocytic cell line THP-1 with [¹³C]ATP as internal standard, we were able to obtain values for the energy charge that were similar to those determined by a reference liquid chromatography electrospray ionization coupled to mass spectrometry (LC-ESI-MS) method.


Assuntos
Metabolismo Energético , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetofenonas/química , Aminacrina/química , Extratos Celulares , Fatores de Tempo
3.
Analyst ; 138(22): 6732-6, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24027777

RESUMO

In order to investigate metabolic properties of single cells of freshwater algae (Haematococcus pluvialis), we implement matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) in combination with microspectroscopic mapping. Straightforward coupling of these two detection platforms was possible thanks to the self-aliquoting properties of micro-arrays for mass spectrometry (MAMS). Following Raman and fluorescence imaging, the isolated cells were covered with a MALDI matrix for targeted metabolic analysis by MALDI-MS. The three consecutive measurements carried out on the same cells yielded complementary information. Using this method, we were able to study the encystment of H. pluvialis - by monitoring the adenosine triphosphate (ATP) to adenosine diphosphate (ADP) ratio during the build-up of astaxanthin in the cells as well as the release of ß-carotene, the precursor of astaxanthin, into the cytosol.


Assuntos
Espectrometria de Massas , Microalgas/química , Análise de Célula Única/instrumentação , Análise Espectral Raman
4.
Anal Chem ; 85(20): 9771-6, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24003910

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a fast analysis tool employed for the detection of a broad range of analytes. However, MALDI-MS has a reputation of not being suitable for quantitative analysis. Inhomogeneous analyte/matrix co-crystallization, spot-to-spot inhomogeneity, as well as a typically low number of replicates are the main contributing factors. Here, we present a novel MALDI sample target for quantitative MALDI-MS applications, which addresses the limitations mentioned above. The platform is based on the recently developed microarray for mass spectrometry (MAMS) technology and contains parallel lanes of hydrophilic reservoirs. Samples are not pipetted manually but deposited by dragging one or several sample droplets with a metal sliding device along these lanes. Sample is rapidly and automatically aliquoted into the sample spots due to the interplay of hydrophilic/hydrophobic interactions. With a few microliters of sample, it is possible to aliquot up to 40 replicates within seconds, each aliquot containing just 10 nL. The analyte droplet dries immediately and homogeneously, and consumption of the whole spot during MALDI-MS analysis is typically accomplished within few seconds. We evaluated these sample targets with respect to their suitability for use with different samples and matrices. Furthermore, we tested their application for generating calibration curves of standard peptides with α-cyano-4-hdydroxycinnamic acid as a matrix. For angiotensin II and [Glu(1)]-fibrinopeptide B we achieved coefficients of determination (r(2)) greater than 0.99 without the use of internal standards.


Assuntos
Análise Serial de Proteínas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Calibragem , Desenho de Equipamento , Peptídeos/análise , Peptídeos/metabolismo , Análise Serial de Proteínas/instrumentação , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Tripsina/metabolismo
5.
Toxicol Lett ; 207(3): 286-90, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21983653

RESUMO

The important industrial chemical 1,3-butadiene (BD; CAS Registry Number: 106-99-0) is a potent carcinogen in B6C3F1 mice and a weak one in Sprague-Dawley rats. This difference is mainly attributed to the species-specific burden by the metabolically formed 1,2:3,4-diepoxybutane (DEB). However, only limited data exist on the DEB blood burden of rodents at BD concentrations below 100 ppm. Considering this, DEB concentrations were determined in the blood of mice and rats immediately after 6h exposures to various constant concentrations of BD of between about 1 and 1200 ppm. Immediately after its collection, blood was injected into a vial that contained perdeuterated DEB (DEB-D(6)) as internal standard. Plasma samples were prepared and treated with sodium diethyldithiocarbamate that derivatized metabolically produced DEB and DEB-D(6) to their bis(dithiocarbamoyl) esters, which were then analyzed by high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometer. DEB concentrations in blood versus BD exposure concentrations in air could be described by one-phase exponential association functions. Herewith calculated (±)-DEB concentrations in blood increased in mice from 5.4 nmol/l at 1 ppm BD to 1860 nmol/l at 1250 ppm BD and in rats from 1.2 nmol/l at 1 ppm BD to 92 nmol/l at 200 ppm BD, at which exposure concentration 91% of the calculated DEB plateau concentration in rat blood was reached. This information on the species-specific blood burden by the highly mutagenic DEB helps to explain why the carcinogenic potency of BD in rats is low compared to that in mice.


Assuntos
Butadienos/farmacocinética , Carcinógenos/farmacocinética , Compostos de Epóxi/sangue , Animais , Relação Dose-Resposta a Droga , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA