Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175860

RESUMO

To demonstrate and analyze the specific T-cell response following barrier disruption and antigen translocation, circulating food antigen-specific effector T-cells isolated from peripheral blood were analyzed in patients suffering from celiac disease (CeD) as well as inflammatory bowel disease (IBD). We applied the antigen-reactive T-cell enrichment (ARTE) technique allowing for phenotypical and functional flow cytometric analyses of rare nutritional antigen-specific T-cells, including the celiac disease-causing gliadin (gluten). For CeD, patient groups, including treatment-refractory cases, differ significantly from healthy controls. Even symptom-free patients on a gluten-free diet were distinguishable from healthy controls, without being previously challenged with gluten. Moreover, frequency and phenotype of nutritional antigen-specific T-cells of IBD patients directly correlated to the presence of small intestinal inflammation. Specifically, the frequency of antigen specific T-cells as well as pro-inflammatory cytokines was increased in patients with active CeD or Crohn's disease, respectively. These results suggest active small intestinal inflammation as key for the development of a peripheral food antigen-specific T-cell response in Crohn's disease and celiac disease.


Assuntos
Doença Celíaca , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Linfócitos T , Glutens , Inflamação
2.
Arch Immunol Ther Exp (Warsz) ; 70(1): 5, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35064840

RESUMO

The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Colo , Neoplasias Pulmonares , Melanoma , Comunicação Celular , Humanos , Complexo de Endopeptidases do Proteassoma , Microambiente Tumoral
3.
Nat Commun ; 12(1): 4077, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210970

RESUMO

Emerging data demonstrate that the activity of immune cells can be modulated by microbial molecules. Here, we show that the short-chain fatty acids (SCFAs) pentanoate and butyrate enhance the anti-tumor activity of cytotoxic T lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells through metabolic and epigenetic reprograming. We show that in vitro treatment of CTLs and CAR T cells with pentanoate and butyrate increases the function of mTOR as a central cellular metabolic sensor, and inhibits class I histone deacetylase activity. This reprogramming results in elevated production of effector molecules such as CD25, IFN-γ and TNF-α, and significantly enhances the anti-tumor activity of antigen-specific CTLs and ROR1-targeting CAR T cells in syngeneic murine melanoma and pancreatic cancer models. Our data shed light onto microbial molecules that may be used for enhancing cellular anti-tumor immunity. Collectively, we identify pentanoate and butyrate as two SCFAs with therapeutic utility in the context of cellular cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fatores Imunológicos/metabolismo , Imunoterapia Adotiva/métodos , Microbiota/fisiologia , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Butiratos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Imunoterapia , Interferon gama , Subunidade alfa de Receptor de Interleucina-2 , Megasphaera , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Receptores Acoplados a Proteínas G/genética , Fator de Necrose Tumoral alfa
4.
Cancer Immunol Res ; 9(6): 682-692, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707310

RESUMO

Apart from the constitutive proteasome, the immunoproteasome that comprises the three proteolytic subunits LMP2, MECL-1, and LMP7 is expressed in most immune cells. In this study, we describe opposing roles for immunoproteasomes in regulating the tumor microenvironment (TME). During chronic inflammation, immunoproteasomes modulated the expression of protumorigenic cytokines and chemokines and enhanced infiltration of innate immune cells, thus triggering the onset of colitis-associated carcinogenesis (CAC) in wild-type mice. Consequently, immunoproteasome-deficient animals (LMP2/MECL-1/LMP7-null mice) were almost completely resistant to CAC development. In patients with ulcerative colitis with high risk for CAC, immunoproteasome-induced protumorigenic mediators were upregulated. In melanoma tumors, the role of immunoproteasomes is relatively unknown. We found that high expression of immunoproteasomes in human melanoma was associated with better prognosis. Similarly, our data revealed that the immunoproteasome has antitumorigenic activity in a mouse model of melanoma. The antitumor immunity against melanoma was compromised in immunoproteasome-deficient mice because of the impaired activity of CD8+ CTLs, CD4+ Th1 cells, and antigen-presenting cells. These findings show that immunoproteasomes may exert opposing roles with either pro- or antitumoral properties in a context-dependent manner.


Assuntos
Cisteína Endopeptidases/metabolismo , Melanoma Experimental/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colite/patologia , Cisteína Endopeptidases/deficiência , Cisteína Endopeptidases/genética , Citocinas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Linfócitos T Citotóxicos/metabolismo
5.
Int J Med Microbiol ; 311(3): 151493, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33652373

RESUMO

The impact of nutrition on systemic and intestinal immune responses remains controversially discussed and yet not fully understood. The majority of studies investigating the effects of dietary antigens focused to understand how local and systemic unresponsiveness is induced by innocuous food antigens. Moreover, it has been shown that both, microbial and dietary antigens are essential for the normal development of the mucosal immune system. Based on experimental findings from animals and IBD patients, we propose a model how the intestinal immune system performs the balancing act between recognition and tolerance of dietary antigens at the same time: In the healthy gut, repetitive uptake of dietary antigens by Peyer's patches leads to increasing activation of CD4+ T cells till hyper-activated lymphocytes undergo apoptosis. In contrast to healthy controls, this mechanism was disturbed in Crohn's disease patients. This observation might help to better understand beneficial effects of dietary intervention therapy.


Assuntos
Doença de Crohn , Nódulos Linfáticos Agregados , Animais , Homeostase , Humanos , Tolerância Imunológica , Imunidade nas Mucosas , Mucosa Intestinal , Linfócitos T
6.
Gut Microbes ; 12(1): 1-17, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33079623

RESUMO

Although it is generally accepted that dietary fiber is health promoting, the underlying immunological and molecular mechanisms are not well defined, especially with respect to cellulose, the most ubiquitous dietary fiber. Here, the impact of dietary cellulose on intestinal microbiota, immune responses and gene expression in health and disease was examined. Lack of dietary cellulose disrupted the age-related diversification of the intestinal microbiota, which subsequently remained in an immature state. Interestingly, one of the most affected microbial genera was Alistipes which is equipped with enzymes to degrade cellulose. Absence of cellulose changed the microbial metabolome, skewed intestinal immune responses toward inflammation, altered the gene expression of intestinal epithelial cells and mice showed increased sensitivity to colitis induction. In contrast, mice with a defined microbiota including A. finegoldii showed enhanced colonic expression of intestinal IL-22 and Reg3γ restoring intestinal barrier function. This study supports the epidemiological observations and adds a causal explanation for the health promoting effects of the most common biopolymer on earth.


Assuntos
Celulose/metabolismo , Fibras na Dieta/metabolismo , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/imunologia , Animais , Anti-Inflamatórios/metabolismo , Bacteroidetes/metabolismo , Colite/patologia , Inflamação/patologia , Interleucinas/biossíntese , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite/biossíntese , Interleucina 22
7.
Sci Rep ; 10(1): 7519, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32372032

RESUMO

Tissue macrophages play an important role in organ homeostasis, immunity and the pathogenesis of various inflammation-driven diseases. One major challenge has been to selectively study resident macrophages in highly heterogeneous organs such as kidney. To address this problem, we adopted a Translational Ribosome Affinity Purification (TRAP)- approach and designed a transgene that expresses an eGFP-tagged ribosomal protein (L10a) under the control of the macrophage-specific c-fms promoter to generate c-fms-eGFP-L10a transgenic mice (MacTRAP). Rigorous characterization found no gross abnormalities in MacTRAP mice and confirmed transgene expression across various organs. Immunohistological analyses of MacTRAP kidneys identified eGFP-L10a expressing cells in the tubulointerstitial compartment which stained positive for macrophage marker F4/80. Inflammatory challenge led to robust eGFP-L10a upregulation in kidney, confirming MacTRAP responsiveness in vivo. We successfully extracted macrophage-specific polysomal RNA from MacTRAP kidneys and conducted RNA sequencing followed by bioinformatical analyses, hereby establishing a comprehensive and unique in vivo gene expression and pathway signature of resident renal macrophages. In summary, we created, validated and applied a new, responsive macrophage-specific TRAP mouse line, defining the translational profile of renal macrophages and dendritic cells. This new tool may be of great value for the study of macrophage biology in different organs and various models of injury and disease.


Assuntos
Técnicas Genéticas , Rim/citologia , Macrófagos/metabolismo , Biossíntese de Proteínas , Animais , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Inflamação , Camundongos , Camundongos Transgênicos , RNA/metabolismo , RNA-Seq , Ribossomos/metabolismo , Transgenes
8.
Eur J Immunol ; 50(2): 292-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724737

RESUMO

Mice lacking CD4+ T cells or B cells are highly susceptible to Citrobacter rodentium infection. In this study, we show that the activity of the transcription factor c-Rel in lymphocytes is crucial for clearance of C. rodentium. Mice deficient for c-Rel fail to generate protective antibodies and to eradicate the pathogen.


Assuntos
Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos
9.
J Clin Invest ; 129(5): 1972-1983, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30939122

RESUMO

The impact of food antigens on intestinal homeostasis and immune function is poorly understood. Here, we explored the impact of dietary antigens on the phenotype and fate of intestinal T cells. Physiological uptake of dietary proteins generated a highly activated CD44+Helios+CD4+ T cell population predominantly in Peyer patches. These cells are distinct from regulatory T cells and develop independently of the microbiota. Alimentation with a protein-free, elemental diet led to an atrophic small intestine with low numbers of activated T cells, including Tfh cells and decreased amounts of intestinal IgA and IL-10. Food-activated CD44+Helios+CD4+ T cells in the Peyer patches are controlled by the immune checkpoint molecule PD-1. Blocking the PD-1 pathway rescued these T cells from apoptosis and triggered proinflammatory cytokine production, which in IL-10-deficient mice was associated with intestinal inflammation. In support of these findings, our study of patients with Crohn's disease revealed significantly reduced frequencies of apoptotic CD4+ T cells in Peyer patches as compared with healthy controls. These results suggest that apoptosis of diet-activated T cells is a hallmark of the healthy intestine.


Assuntos
Apoptose , Linfócitos T CD4-Positivos/citologia , Dieta , Intestino Delgado/citologia , Intestino Delgado/patologia , Animais , Biópsia , Ensaio de Imunoadsorção Enzimática , Homeostase , Humanos , Receptores de Hialuronatos/metabolismo , Imunoglobulina A/metabolismo , Interleucina-10/metabolismo , Intestino Delgado/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Nódulos Linfáticos Agregados/citologia
10.
Oncotarget ; 8(31): 50447-50459, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881574

RESUMO

Chronic inflammation is a well-known risk factor in development of intestinal tumorigenesis, although the exact mechanisms underlying development of colitis-associated cancer (CAC) still remain obscure. The activity and function of immunoproteasome has been extensively analyzed in the context of inflammation and infectious diseases. Here, we show that the proteasomal immunosubunit LMP7 plays an essential role in development of CAC. Mice devoid of LMP7 were resistant to chronic inflammation and formation of neoplasia, and developed virtually no tumors after AOM/DSS treatment. Our data reveal that LMP7 deficiency resulted in reduced expression of pro-tumorigenic chemokines CXCL1, CXCL2 and CXCL3 as well as adhesion molecule VCAM-1. As a consequence, an impaired recruitment and activity of tumor-infiltrating leukocytes resulting in decreased secretion of cytokines IL-6 and TNF-α was observed. Further, the deletion or pharmacological inhibition of LMP7 and consequent blockade of NF-κB abrogated the production of IL-17A, which possesses a strong carcinogenic activity in the gut. Moreover, in vivo administration of the selective LMP7 inhibitor ONX-0914 led to a marked reduction of tumor numbers in wild-type (WT) mice. Collectively, we identified the immunoproteasome as a crucial mediator of inflammation-driven neoplasia highlighting a novel potential therapeutic approach to limit colonic tumorigenesis.

11.
Cell ; 167(1): 203-218.e17, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641500

RESUMO

Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαß(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.


Assuntos
Butirofilinas/imunologia , Mucosa Intestinal/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Butirofilinas/genética , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Timo/imunologia
12.
Nat Commun ; 6: 8576, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26815406

RESUMO

Regulatory T-cells induced via IL-2 and TGFß in vitro (iTreg) suppress immune cells and are potential therapeutics during autoimmunity. However, several reports described their re-differentiation into pathogenic cells in vivo and loss of their key functional transcription factor (TF) FOXP3 after T-cell antigen receptor (TCR)-signalling in vitro. Here, we show that TCR-activation antagonizes two necessary TFs for foxp3 gene transcription, which are themselves regulated by phosphorylation. Although the tyrosine phosphatase PTPN2 is induced to restrain IL-2-mediated phosphorylation of the TF STAT5, expression of the TF FOXO1 is downregulated and miR-182, a suppressor of FOXO1 expression, is upregulated. TGFß counteracts the FOXP3-depleting TCR-signal by reassuring FOXO1 expression and by re-licensing STAT5 phosphorylation. Overexpressed phosphorylation-independent active versions of FOXO1 and STAT5 or knockdown of PTPN2 restores FOXP3 expression despite TCR-signal and absence of TGFß. This study suggests novel targets for stabilisation and less dangerous application of iTreg during devastating inflammation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Masculino , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Receptores de Antígenos de Linfócitos T/genética
13.
PLoS One ; 7(6): e39827, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768135

RESUMO

Proteasomes are the major enzyme complexes for non-lysosomal protein degradation in eukaryotic cells. Mammals express two sets of catalytic subunits: the constitutive subunits ß1, ß2 and ß5 and the immunosubunits LMP2 (ß1i), MECL-1 (ß2i) and LMP7 (ß5i). The LMP7-propeptide (proLMP7) is required for optimal maturation of LMP2/MECL-1-containing precursors to mature immunoproteasomes, but can also mediate efficient integration into mixed proteasomes containing ß1 and ß2. In contrast, the ß5-propeptide (proß5) has been suggested to promote preferential integration into ß1/ß2-containing precursors, consequently favouring the formation of constitutive proteasomes. Here, we show that proß5 predominantly promotes integration into LMP2/MECL-1-containing precursors in IFNγ-stimulated, LMP7-deficient cells and infected LMP7-deficient mice. This demonstrates that proß5 does not direct preferential integration into ß1/ß2-containing precursors, but instead promotes the formation of mixed LMP2/MECL-1/ß5 proteasomes under inflammatory conditions. Moreover, the propeptides substantially differ in their capacity to promote proteasome maturation, with proLMP7 showing a significantly higher chaperone activity as compared to proß5. Increased efficiency of proteasome maturation mediated by proLMP7 is required for optimal MHC class I cell surface expression and is equally important as the catalytic activity of immunoproteasomes. Intriguingly, induction of LMP7 by infection not only results in rapid exchange of constitutive by immunosubunits, as previously suggested, but also increases the total proteasome abundance within the infected tissue. Hence our data identify a novel LMP7-dependend mechanism to enhance the activity of the proteasome system in infection, which is based on the high chaperone activity of proLMP7 and relies on accelerated maturation of active proteasome complexes.


Assuntos
Listeriose/enzimologia , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoprecipitação , Interferon gama/farmacologia , Listeria/efeitos dos fármacos , Listeria/fisiologia , Listeriose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/deficiência , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Clin Dev Immunol ; 2012: 239368, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22481964

RESUMO

The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65), c-Rel, RelB, and the precursor proteins NF-κB1 (p105) and NF-κB2 (p100), that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs) controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.


Assuntos
Regulação da Expressão Gênica/imunologia , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Diferenciação Celular/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Humanos , Tolerância Imunológica , Mamíferos , NF-kappa B/genética , Multimerização Proteica , Proteínas Proto-Oncogênicas c-rel/genética , Transdução de Sinais/imunologia , Linfócitos T/citologia
15.
Eur J Immunol ; 41(5): 1388-98, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21469108

RESUMO

Recent studies demonstrated the crucial role of c-Rel in directing Treg lineage commitment and its involvement in T helper 1 (Th1) cell-mediated autoimmune inflammation. We thus wondered whether these opposite functions of c-Rel influence the course of antiparasitic immune responses against Leishmania major, an accepted model for the impact of T-cell subsets on disease outcome. Here we show that c-Rel-deficient (rel(-/-) ) mice infected with L. major displayed dramatically exacerbated leishmaniasis and enhanced parasite burdens. In contrast to WT mice, IFN-γ and IL-17 production in response to L. major antigens was severely impaired in rel(-/-) mice. Reconstitution of Rag1(-/-) T-cell deficient mice with rel(-/-) CD4(+) T cells followed by L. major infection demonstrated that c-Rel-deficient T cells mount normal Th1 responses and are able to contain the infection. Similarly, Th1 differentiation of naïve CD4(+) cells in vitro was normal. Notably, a selective defect in IL-12 and IL-23 production was observed in rel(-/-) DCs compared with their WT counterparts. In conclusion, our data suggest that the expression of c-Rel in myeloid cells is essential for clearance of L. major and that this c-Rel-mediated effect is dominant over the lack of Tregs.


Assuntos
Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Proteínas Proto-Oncogênicas c-rel/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Proteínas de Homeodomínio/genética , Interferon gama/biossíntese , Interleucina-12/deficiência , Interleucina-12/genética , Interleucina-17/biossíntese , Interleucina-23/genética , Leishmania major/fisiologia , Leishmaniose Cutânea/parasitologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-rel/deficiência , Proteínas Proto-Oncogênicas c-rel/genética , Linfócitos T Reguladores/imunologia
16.
Gut ; 59(8): 1079-87, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639251

RESUMO

BACKGROUND: The bacterial microflora aggravates graft-versus-host-disease (GvHD) after allogeneic stem cell transplantation, but the underlying mechanisms of manifestations of intestinal GvHD (iGvHD) in the gut remain poorly understood. AIM: To analyse the gut flora composition and the impact of bacterial sensing via Toll-like receptors (TLRs) in iGvHD. METHODS: By mimicking clinical low-intensity conditioning regimens used in humans, a novel irradiation independent, treosulfan and cyclophosphamide-based murine allogeneic transplantation model was established. A global survey of the intestinal microflora by cultural and molecular methods was performed, the intestinal immunopathology in TLR-deficient recipient mice with iGvHD investigated and finally, the impact of anti-TLR9 treatment on iGvHD development assessed. RESULTS: The inflammatory responses in iGvHD were accompanied by gut flora shifts towards enterobacteria, enterococci and Bacteroides/Prevotella spp. Analysis of iGvHD in MyD88(-/-), TRIF(-/-), TLR2/4(-/-), and TLR9(-/-) recipient mice showed that bacterial sensing via TLRs was essential for iGvHD development. Acute iGvHD was characterised by increasing numbers of apoptotic cells, proliferating cells, T cells and neutrophils within the colon. These responses were significantly reduced in MyD88(-/-), TLR2/4(-/-), TRIF(-/-) and TLR9(-/-) mice, as compared with wild-type controls. However, TRIF(-/-) and TLR2/4(-/-) mice were not protected from mortality, whereas TLR9(-/-) mice displayed increased survival rates. The important role of TLR9-mediated immunopathology was independently confirmed by significantly reduced macroscopic disease symptoms and colonic apoptosis as well as by reduced T-cell and neutrophil numbers within the colon after treatment with a synthetic inhibitory oligonucleotide. CONCLUSIONS: These results emphasise the critical role of gut microbiota, innate immunity and TLR9 in iGvHD and highlight anti-TLR9 strategies as novel therapeutic options.


Assuntos
Colite/microbiologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor Toll-Like 9/imunologia , Doença Aguda , Animais , Apoptose/imunologia , Transplante de Medula Óssea , Proliferação de Células , Colite/imunologia , Colite/patologia , Colite/prevenção & controle , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Oligonucleotídeos Antissenso/uso terapêutico , Baço/transplante , Receptor Toll-Like 9/deficiência , Condicionamento Pré-Transplante
17.
Eur J Immunol ; 40(3): 671-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20049877

RESUMO

The NF-kappaB/Rel family member c-Rel was described to be required for the development of T(H)1 responses. However, the role of c-Rel in the differentiation of T(H)17 and regulatory CD4(+)Foxp3(+) T cells (Treg) remains obscure. Here, we show that in the absence of c-Rel, in vitro differentiation of pro-inflammatory T(H)17 cells is normal. In contrast, generation of inducible Treg (iTreg) within c-Rel-deficient CD4(+) T cells was severely hampered and correlated to reduced numbers of Foxp3(+) T cells in vivo. Mechanistically, in vitro conversion of naive CD4(+) T cells into iTreg was crucially dependent on c-Rel-mediated synthesis of endogenous IL-2. The addition of exogenous IL-2 was sufficient to rescue the development of c-Rel-deficient iTreg. Thus, c-Rel is essential for the development of Foxp3(+) Treg but not for T(H)17 cells via regulating the production of IL-2.


Assuntos
Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Animais , Western Blotting , Separação Celular , Citometria de Fluxo , Interleucina-17/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
18.
Mol Carcinog ; 49(2): 121-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20027638

RESUMO

Recent studies have demonstrated that increased expression of coding region determinant-binding protein (CRD-BP) in response to beta-catenin signaling leads to the stabilization of beta-TrCP1, a substrate-specific component of SCF E3 ubiquitin ligase complex, resulting in an accelerated degradation of IkappaBalpha and activation of canonical nuclear factor-kappaB (NF-kappaB) pathway. Here, we show that the noncanonical NF-kappaB1 p105 pathway is constitutively activated in colorectal carcinoma specimens, being particularly associated with beta-catenin-mediated increased expression of CRD-BP and beta-TrCP1. In the carcinoma tissues exhibiting high levels of nuclear beta-catenin the phospho-p105 levels were increased and total p105 amounts were decreased in comparison to that of normal tissue indicating an activation of this NF-kappaB pathway. Knockdown of CRD-BP in colorectal cancer cell line SW620 resulted in significantly higher basal levels of both NF-kappaB inhibitory proteins, p105 and IkappaBalpha. Furthermore decreased NF-kappaB binding activity was observed in CRD-BP siRNA-transfected SW620 cells as compared with those transfected with control siRNA. Altogether, our findings suggest that activation of NF-kappaB1 p105 signaling in colorectal carcinoma might be attributed to beta-catenin-mediated induction of CRD-BP and beta-TrCP1.


Assuntos
Núcleo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno
19.
Int J Colorectal Dis ; 24(10): 1133-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19274467

RESUMO

BACKGROUND AND PURPOSE: Activation of the transcription factor NF-kappaB by proteasomes and subsequent nuclear translocation of cytoplasmatic complexes play a crucial role in the intestinal inflammation. Proteasomes have a pivotal function in NF-kappaB activation by mediating degradation of inhibitory IkappaB proteins and processing of NF-kappaB precursor proteins. This study aims to analyze the expression of the human proteasome subunits in colonic tissue of patients with Crohn's disease. MATERIALS AND METHODS: Thirteen patients with Crohn's disease and 12 control patients were studied. The expression of immunoproteasomes and constitutive proteasomes was examined by Western blot analysis, immunoflourescence and quantitative real-time PCR. For real-time PCR, AK2C was used as housekeeping gene. RESULTS: The results indicate the influence of the intestinal inflammation on the expression of the proteasomes in Crohn's disease. Proteasomes from inflamed intestine of patients with Crohn's disease showed significantly increased expression of immunosubunits on both protein and mRNA levels. Especially, the replacement of the constitutive proteasome subunit beta1 by inducible immunosubunit beta1i was observed in patients with active Crohn's disease. In contrast, relatively low abundance of immunoproteasomes was found in control tissue. CONCLUSIONS: Our data demonstrate that in contrast to normal colonic tissue, the expression of immunoproteasomes was evidently increased in the inflamed colonic mucosa of patients with Crohn's disease. Thus, the chronic intestinal inflammation process in Crohn's disease leads to significant alterations of proteasome subsets.


Assuntos
Domínio Catalítico/genética , Doença de Crohn/enzimologia , Doença de Crohn/genética , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/patologia , Complexo de Endopeptidases do Proteassoma/genética , Estudos de Casos e Controles , Imunofluorescência , Regulação Enzimológica da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/enzimologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Inflamm Bowel Dis ; 15(4): 526-33, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19067411

RESUMO

BACKGROUND: The diagnostic differentiation between Crohn's disease (CD) and ulcerative colitis (UC) is sometimes difficult. To date, there are no serological markers that are specific and sensitive enough to differentiate between these 2 diseases. Early and safe prediction of the inflammatory bowel disease (IBD) type is of great importance for the specific treatment of IBD patients. We thus analyzed and compared the expression of catalytic proteasome subunits in the gut of mice and in the normal and inflamed intestines of CD and UC patients and assessed whether the subunit pattern is suitable for diagnostic differentiation. METHODS: The 20S proteasomes were isolated from surgical tissue specimens derived from terminal ileum and colon of IBD patients and controls. Spots of 20S proteasomes separated by 2D electrophoresis were analyzed by mass spectrometry. Quick detection of catalytic beta2, beta2i, and beta5i subunits was performed by incubating proteasomes with a biotinylated inhibitor (AdaK(Bio)Ahx3L3VS) and subsequently by streptavidin-horseradish peroxide. RESULTS: 20S proteasomes were isolated from the human liver, colon, and terminal ileum. Low expression of the immunosubunits beta1i and beta2i was found in the liver and colon but high amounts in the small intestine. In colon and liver beta5i was found to be associated with the constitutive beta1, beta2 subunits, indicating the existence of mixed proteasomes. Further, inflammation in CD but not UC patients induced massive upregulation of beta1i and beta2i in the colon and terminal ileum, indicating the importance of this protein complex as a disease marker. CONCLUSIONS: We here show that CD and UC patients display a characteristic pattern of proteasome subunit composition which can be used as diagnostic tool to differentiate between CD and UC.


Assuntos
Biomarcadores/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Doença de Crohn/diagnóstico , Doença de Crohn/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto , Idoso , Animais , Eletroforese em Gel Bidimensional , Feminino , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Especificidade da Espécie , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA