Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(19): e114986, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37635635

RESUMO

Although ion transporters and channels have been extensively studied over the last couple of decades, there are still unresolved aspects with regards to their contribution to cancer cell biology. Recent work by Folcher et al (2023) reports a critical role for Na+ leak channel NALCN in metastatic prostate cancer. The study demonstrates that NALCN promotes metastatic spread to distant organs by controlling Ca2+ signaling.


Assuntos
Canais Iônicos , Neoplasias da Próstata , Masculino , Humanos , Canais de Sódio , Neoplasias da Próstata/tratamento farmacológico , Sódio/metabolismo , Proteínas de Membrana/genética
2.
Neuro Oncol ; 25(4): 674-686, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36054930

RESUMO

BACKGROUND: Melanoma, the deadliest of skin cancers, has a high propensity to form brain metastases that are associated with a markedly worsened prognosis. In spite of recent therapeutic advances, melanoma brain lesions remain a clinical challenge, biomarkers predicting brain dissemination are not clear and differences with other metastatic sites are poorly understood. METHODS: We examined a genetically diverse panel of human-derived melanoma brain metastasis (MBM) and extracranial cell lines using targeted sequencing, a Reverse Phase Protein Array, protein expression analyses, and functional studies in vitro and in vivo. RESULTS: Brain-specific genetic alterations were not detected; however, MBM cells in vitro displayed lower proliferation rates and MBM-specific protein expression patterns associated with proliferation, DNA damage, adhesion, and migration. MBM lines displayed higher levels of RAC1 expression, involving a distinct RAC1-PAK1-JNK1 signaling network. RAC1 knockdown or treatment with small molecule inhibitors contributed to a less aggressive MBM phenotype in vitro, while RAC1 knockdown in vivo led to reduced tumor volumes and delayed tumor appearance. Proliferation, adhesion, and migration were higher in MBM vs nonMBM lines in the presence of insulin or brain-derived factors and were affected by RAC1 levels. CONCLUSIONS: Our findings indicate that despite their genetic variability, MBM engage specific molecular processes such as RAC1 signaling to adapt to the brain microenvironment and this can be used for the molecular characterization and treatment of brain metastases.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Cutâneas , Humanos , Prognóstico , Melanoma/patologia , Neoplasias Encefálicas/genética , Biomarcadores , Microambiente Tumoral , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36156348

RESUMO

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Assuntos
Cálcio , Melanoma , Humanos , Cálcio/metabolismo , Proteômica , Melanoma/genética , Melanoma/metabolismo , Oxirredução , Fenótipo , Linhagem Celular Tumoral
4.
Gut ; 71(12): 2561-2573, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35365570

RESUMO

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) can persist in the stage of simple hepatic steatosis or progress to steatohepatitis (NASH) with an increased risk for cirrhosis and cancer. We examined the mechanisms controlling the progression to severe NASH in order to develop future treatment strategies for this disease. DESIGN: NFATc1 activation and regulation was examined in livers from patients with NAFLD, cultured and primary hepatocytes and in transgenic mice with differential hepatocyte-specific expression of the transcription factor (Alb-cre, NFATc1c.a . and NFATc1Δ/Δ ). Animals were fed with high-fat western diet (WD) alone or in combination with tauroursodeoxycholic acid (TUDCA), a candidate drug for NAFLD treatment. NFATc1-dependent ER stress-responses, NLRP3 inflammasome activation and disease progression were assessed both in vitro and in vivo. RESULTS: NFATc1 expression was weak in healthy livers but strongly induced in advanced NAFLD stages, where it correlates with liver enzyme values as well as hepatic inflammation and fibrosis. Moreover, high-fat WD increased NFATc1 expression, nuclear localisation and activation to promote NAFLD progression, whereas hepatocyte-specific depletion of the transcription factor can prevent mice from disease acceleration. Mechanistically, NFATc1 drives liver cell damage and inflammation through ER stress sensing and activation of the PERK-CHOP unfolded protein response (UPR). Finally, NFATc1-induced disease progression towards NASH can be blocked by TUDCA administration. CONCLUSION: NFATc1 stimulates NAFLD progression through chronic ER stress sensing and subsequent activation of terminal UPR signalling in hepatocytes. Interfering with ER stress-responses, for example, by TUDCA, protects fatty livers from progression towards manifest NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/metabolismo , Camundongos Transgênicos , Progressão da Doença , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo
5.
Cancer Res ; 81(21): 5540-5554, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518212

RESUMO

Despite impressive advances in melanoma-directed immunotherapies, resistance is common and many patients still succumb to metastatic disease. In this context, harnessing natural killer (NK) cells, which have thus far been sidelined in the development of melanoma immunotherapy, could provide therapeutic benefits for cancer treatment. To identify molecular determinants of NK cell-mediated melanoma killing (NKmK), we quantified NK-cell cytotoxicity against a panel of genetically diverse melanoma cell lines and observed highly heterogeneous susceptibility. Melanoma protein microarrays revealed a correlation between NKmK and the abundance and activity of a subset of proteins, including several metabolic factors. Oxidative phoshorylation, measured by oxygen consumption rate, negatively correlated with melanoma cell sensitivity toward NKmK, and proteins involved in mitochondrial metabolism and epithelial-mesenchymal transition were confirmed to regulate NKmK. Two- and three-dimensional killing assays and melanoma xenografts established that the PI3K/AKT/mTOR signaling axis controls NKmK via regulation of NK cell-relevant surface proteins. A "protein-killing-signature" based on the protein analysis predicted NKmK of additional melanoma cell lines and the response of patients with melanoma to anti-PD-1 checkpoint therapy. Collectively, these findings identify novel NK cell-related prognostic biomarkers and may contribute to improved and personalized melanoma-directed immunotherapies. SIGNIFICANCE: NK-cell cytotoxicity assays and protein microarrays reveal novel biomarkers of NK cell-mediated melanoma killing and enable development of signatures to predict melanoma patient responsiveness to immunotherapies.


Assuntos
Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Melanoma/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise Serial de Proteínas , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Rep ; 33(3): 108292, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086068

RESUMO

Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.


Assuntos
Cálcio/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Cisteína/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA