Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 126(8): 1168-1177, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34969998

RESUMO

BACKGROUND: Improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II. METHODS: CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked VH domains that avidly bind and block PD1 and LAG3 on dual-positive T cells. We present the preclinical primary pharmacology of CB213: biochemistry, cell-based function vs. immune-suppressive targets, induction of T cell proliferation ex vivo using blood obtained from NSCLC patients, and syngeneic mouse model anti-tumour activity. CB213 pharmacokinetics was assessed in cynomolgus macaques. RESULTS: CB213 shows picomolar avidity when simultaneously engaging PD1 and LAG3. Assessing LAG3/MHC-II or PD1/PD-L1 suppression individually, CB213 preferentially counters the LAG3 axis. CB213 showed superior activity vs. αPD1 antibody to induce ex vivo NSCLC patient T cell proliferation and to suppress tumour growth in a syngeneic mouse tumour model, for which both experimental systems possess PD1 and LAG3 suppressive components. Non-human primate PK of CB213 suggests weekly clinical administration. CONCLUSIONS: CB213 is poised to enter clinical development and, through intercepting both PD1 and LAG3 resistance mechanisms, may benefit patients with tumours escaping front-line immunological control.


Assuntos
Antígenos CD/imunologia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígenos CD/metabolismo , Antígeno B7-H1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Receptor de Morte Celular Programada 1 , Linfócitos T , Proteína do Gene 3 de Ativação de Linfócitos
2.
Plant Biotechnol J ; 18(2): 402-414, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31301102

RESUMO

Plants can provide a cost-effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3-fucose and ß1,2-xylose residues and glycans extended with terminal ß1,4-galactose. Surface plasmon resonance-based assays were established for kinetic/affinity evaluation of antibody-FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant-made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell-derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant-produced antibodies.


Assuntos
Anticorpos Anti-HIV , Fragmentos Fc das Imunoglobulinas , Engenharia de Proteínas , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1 , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Polissacarídeos , Ligação Proteica , Nicotiana/genética
3.
Plant Biotechnol J ; 16(12): 1983-1996, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29682888

RESUMO

In this study, a strategy based on polymeric immunoglobulin G scaffolds (PIGS) was used to produce a vaccine candidate for Mycobacterium tuberculosis. A genetic fusion construct comprising genes encoding the mycobacterial Ag85B antigen, an immunoglobulin γ-chain fragment and the tailpiece from immunoglobulin µ chain was engineered. Expression was attempted in Chinese Hamster Ovary (CHO) cells and in Nicotiana benthamiana. The recombinant protein assembled into polymeric structures (TB-PIGS) in N. benthamiana, similar in size to polymeric IgM. These complexes were subsequently shown to bind to the complement protein C1q and FcγRs with increased affinity. Modification of the N-glycans linked to TB-PIGS by removal of xylose and fucose residues that are normally found in plant glycosylated proteins also resulted in increased affinity for low-affinity FcγRs. Immunization studies in mice indicated that TB-PIGS are highly immunogenic with and without adjuvant. However, they did not improve protective efficacy in mice against challenge with M. tuberculosis compared to conventional vaccination with BCG, suggesting that additional or alternative antigens may be needed to protect against this disease. Nevertheless, these results establish a novel platform for producing polymeric antigen-IgG γ-chain molecules with inherent functional characteristics that are desirable in vaccines.


Assuntos
Antígenos de Bactérias/genética , Imunoglobulina G/genética , Proteínas Recombinantes de Fusão/genética , Vacinas contra a Tuberculose/genética , Animais , Antígenos de Bactérias/imunologia , Células CHO , Cricetulus , Feminino , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle
4.
Biotechnol Bioeng ; 115(3): 565-576, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178403

RESUMO

Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential.


Assuntos
Interleucina-2 , Leucócitos Mononucleares/metabolismo , Nicotiana , Plantas Geneticamente Modificadas , Polissacarídeos , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Humanos , Interleucina-2/biossíntese , Interleucina-2/química , Interleucina-2/genética , Interleucina-2/farmacologia , Leucócitos Mononucleares/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/genética , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos de Cadeia Única/farmacologia , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA