Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2120339119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857873

RESUMO

During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação Eucariótico 4G , Fatores de Iniciação em Eucariotos , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Resposta a Proteínas não Dobradas , Animais , Códon de Iniciação , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/antagonistas & inibidores , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Biossíntese de Proteínas , Resposta a Proteínas não Dobradas/genética
2.
Elife ; 92020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31916932

RESUMO

Monocytes are circulating short-lived macrophage precursors that are recruited on demand from the blood to sites of inflammation and challenge. In steady state, classical monocytes give rise to vasculature-resident cells that patrol the luminal side of the endothelium. In addition, classical monocytes feed macrophage compartments of selected organs, including barrier tissues, such as the skin and intestine, as well as the heart. Monocyte differentiation under conditions of inflammation has been studied in considerable detail. In contrast, monocyte differentiation under non-inflammatory conditions remains less well understood. Here we took advantage of a combination of cell ablation and precursor engraftment to investigate the generation of gut macrophages from monocytes. Collectively, we identify factors associated with the gradual adaptation of monocytes to tissue residency. Moreover, comparison of monocyte differentiation into the colon and ileum-resident macrophages revealed the graduated acquisition of gut segment-specific gene expression signatures.


Assuntos
Diferenciação Celular , Colo/fisiologia , Íleo/fisiologia , Macrófagos/metabolismo , Monócitos/citologia , Animais , Camundongos , Organismos Livres de Patógenos Específicos
4.
Mol Cell Biol ; 39(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420357

RESUMO

Protein synthesis is linked to cell proliferation, and its deregulation contributes to cancer. Eukaryotic translation initiation factor 1A (eIF1A) plays a key role in scanning and AUG selection and differentially affects the translation of distinct mRNAs. Its unstructured N-terminal tail (NTT) is frequently mutated in several malignancies. Here we report that eIF1A is essential for cell proliferation and cell cycle progression. Ribosome profiling of eIF1A knockdown cells revealed a substantial enrichment of cell cycle mRNAs among the downregulated genes, which are predominantly characterized by a lengthy 5' untranslated region (UTR). Conversely, eIF1A depletion caused a broad stimulation of 5' UTR initiation at a near cognate AUG, unveiling a prominent role of eIF1A in suppressing 5' UTR translation. In addition, the AUG context-dependent autoregulation of eIF1 was disrupted by eIF1A depletion, suggesting their cooperation in AUG context discrimination and scanning. Importantly, cancer-associated eIF1A NTT mutants augmented the eIF1A positive effect on a long 5' UTR, while they hardly affected AUG selection. Mechanistically, these mutations diminished the eIF1A interaction with Rps3 and Rps10 implicated in scanning arrest. Our findings suggest that the reduced binding of eIF1A NTT mutants to the ribosome retains its open state and facilitates scanning of long 5' UTR-containing cell cycle genes.


Assuntos
Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Proteínas Ribossômicas/metabolismo , Regiões 5' não Traduzidas , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Códon de Iniciação , Fibroblastos , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Mutação , Neoplasias/genética , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
5.
Science ; 360(6394)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29903938

RESUMO

Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4+ T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Percepção de Quorum/imunologia , Animais , Contagem de Linfócito CD4 , Diferenciação Celular/genética , Simulação por Computador , Expressão Gênica , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Selectina L/genética , Selectina L/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Imunológicos , Análise de Sequência de RNA , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia
6.
Hum Genomics ; 5(6): 709-17, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22155609

RESUMO

Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org). This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot) for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.


Assuntos
Bases de Dados Genéticas , Genes/genética , Genoma Humano , Genômica , Biologia Computacional , Humanos
7.
Database (Oxford) ; 2010: baq020, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20689021

RESUMO

GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73,000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards' unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene's functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database URL: www.genecards.org.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Processamento Alternativo , Bases de Dados de Proteínas , Expressão Gênica , Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Humanos , Internet , Mutação , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas , Ferramenta de Busca
8.
Endocrinology ; 143(5): 1578-88, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11956138

RESUMO

Members of the ATF/CREB family of transcription factors are involved in gene activation in various physiological systems ranging from metabolite homeostasis, through regulation of cell cycle, to learning and memory. Two members of this family, cAMP-responsive element binding protein (CREB), and cAMP-responsive element modulator (CREM) are active during mammalian spermatogenesis and are required for this process, as has been shown by knockout and dominant negative experiments. In an effort to identify mouse proteins that interact with the testis-specific protein Tctex2, a mouse testis expression library was screened via the two-hybrid system, using the carboxyl-terminal portion of this protein as bait. A clone containing two overlapping open reading frames, related by a frameshift of one nucleotide, was subsequently isolated. The peptide that interacted with Tctex2 does not initiate from a consensus AUG codon, and it is not clear whether it exists physiologically. However, the other reading frame, initiating from an AUG codon, encodes a 315-amino acid peptide with significant sequence homology to a subfamily of the CREB genes whose prototype is the mouse LZIP peptide. This novel CREB-like peptide, designated Atce1, is specifically expressed in the testis. A developmental study using Northern hybridization and in situ hybridization analyses revealed that Atce1 transcripts begin to accumulate in testes of mice 24 d after birth, reflecting expression in mid/late round spermatids. Interestingly, EMSAs revealed that in vitro translated Atce1 binds specifically to a nuclear factor-kappaB-binding element rather then to a CRE element. Potential roles for Atce1 are discussed.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Meiose/genética , Espermátides/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Mapeamento Cromossômico , DNA/metabolismo , Eletroforese , Biblioteca Gênica , Haploidia , Células Híbridas , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , Espermatogênese/genética , Espermatogênese/fisiologia , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA