Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 299: 113609, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916171

RESUMO

Over the past decade, in silico genome and transcriptome mining has led to the identification of many new crustacean peptide families, including the agatoxin-like peptides (ALPs), a group named for their structural similarity to agatoxin, a spider venom component. Here, analysis of publicly accessible transcriptomes was used to expand our understanding of crustacean ALPs. Specifically, transcriptome mining was used to investigate the phylogenetic/structural conservation, tissue localization, and putative functions of ALPs in decapod species. Transcripts encoding putative ALP precursors were identified from one or more members of the Penaeoidea (penaeid shrimp), Sergestoidea (sergestid shrimps), Caridea (caridean shrimp), Astacidea (clawed lobsters and freshwater crayfish), Achelata (spiny/slipper lobsters), and Brachyura (true crabs), suggesting a broad, and perhaps ubiquitous, conservation of ALPs in decapods. Comparison of the predicted mature structures of decapod ALPs revealed high levels of amino acid conservation, including eight identically conserved cysteine residues that presumably allow for the formation of four identically positioned disulfide bridges. All decapod ALPs are predicted to have amidated carboxyl-terminals. Two isoforms of ALP appear to be present in most decapod species, one 44 amino acids long and the other 42 amino acids in length, both likely generated by alternative splicing of a single gene. In carideans, a gene or terminal exon duplication appears to have occurred, with alternative splicing producing four ALPs, two 44 and two 42 amino acid isoforms. The identification of ALP precursor-encoding transcripts in nervous system-specific transcriptomes (e.g., Homarus americanus brain, eyestalk ganglia, and cardiac ganglion assemblies, finding confirmed using RT-PCR) suggests that members of this peptide family may serve as locally-released and/or hormonally-delivered neuromodulators in decapods. Their detection in testis- and hepatopancreas-specific transcriptomes suggests that members of the ALP family may also play roles in male reproduction and innate immunity/detoxification.


Assuntos
Agatoxinas/química , Decápodes/genética , Decápodes/metabolismo , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Clonagem Molecular , Decápodes/classificação , Especificidade de Órgãos , Filogenia
2.
Gen Comp Endocrinol ; 282: 113204, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201801

RESUMO

The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10-9 to 10-8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.


Assuntos
Braquiúros/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Neuropeptídeos/farmacologia , Animais , Braquiúros/efeitos dos fármacos , Sistema Digestório/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Neuropeptídeos/química
3.
Mol Immunol ; 101: 329-343, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30036799

RESUMO

We report on the characterization of the native form of an American lobster, Homarus americanus, ß-defensin-like putative antimicrobial peptide, H. americanus defensin 1 (Hoa-D1), sequenced employing top-down and bottom-up peptidomic strategies using a sensitive, chip-based nanoLC-QTOF-MS/MS instrument. The sequence of Hoa-D1 was determined by mass spectrometry; it was found to contain three disulfide bonds and an amidated C-terminus. The sequence was further validated by searching publicly-accessible H. americanus expressed sequence tag (EST) and transcriptome shotgun assembly (TSA) datasets. Hoa-D1, SYVRScSSNGGDcVYRcYGNIINGAcSGSRVccRSGGGYamide (with c representing a cysteine participating in a disulfide bond), was shown to be related to ß-defensin-like peptides previously reported from Panulirus japonicas and Panulirus argus. We found Hoa-D1 in H. americanus hemolymph, hemocytes, the supraoesophageal ganglion (brain), eyestalk ganglia, and pericardial organ extracts, as well as in the plasma of some hemolymph samples. Using discontinuous density gradient separations, we fractionatated hemocytes and localized Hoa-D1 to hemocyte sub-populations. While Hoa-D1 was detected in semigranulocytes and granulocytes using conventional proteomic strategies for analysis, the direct analysis of cell lysates exposed evidence of Hoa-D1 processing, including truncation of the C-terminal tyrosine residue, in the granulocytes, but not semigranulocytes. These measurements demonstrate the insights regarding post-translational modifications and peptide processing that can be revealed through the MS analysis of intact peptides. The identification of Hoa-D1 as a widely-distributed peptide in the lobster suggests the possibility that it may be pleiotropic, with functions in addition to its proposed role as an antimicrobial molecule in the innate immune system.


Assuntos
Defensinas/metabolismo , Nephropidae/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Defensinas/química , Defensinas/isolamento & purificação , Dissulfetos/metabolismo , Granulócitos/metabolismo , Hemócitos/metabolismo , Temperatura Alta , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
4.
Gen Comp Endocrinol ; 165(1): 1-10, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19467234

RESUMO

The PISCF-allatostatins (Manduca sexta- or C-type allatostatins) are a family of pentadecapeptides characterized by a pyroglutamine blocked N-terminus, an unamidated-PISCF C-terminus, and a disulfide bridge between two internal Cys residues. Several isoforms of PISCF-AST are known, all from holometabolous insects. Using a combination of transcriptomics and mass spectrometry, we have identified the first PISCF-type peptides from a non-insect species. In silico analysis of crustacean ESTs identified several Litopenaeus vannamei (infraorder Penaeidea) transcripts encoding putative PISCF-AST precursors. Translation of these ESTs, with subsequent prediction of their putative post-translational processing, revealed the existence of as many as three PISCF-type peptides, including pQIRYHQCYFNPISCF (disulfide bridging between Cys(7) and Cys(14)). Although none of the predicted isoforms was detected by mass spectrometry in L. vannamei, MALDI-FTMS mass profiling identified an m/z signal corresponding to pQIRYHQCYFNPISCF (disulfide bridge present) in neural tissue from 28 other decapods, which included members of six infraorders (Stenopodidea, Astacidea, Thalassinidea, Achelata, Anomura and Brachyura). Further characterization of the peptide using SORI-CID and chemical derivatization/enzymatic digestion supported the theorized structure. In both the crab Cancer borealis and the lobster Homarus americanus, MALDI-based tissue surveys suggest that pQIRYHQCYFNPISCF is broadly distributed in the nervous system; it was also detected in the posterior midgut caecum. Collectively, our data show that members of the PISCF-AST family are not restricted to the holometabolous insects, but instead may be broadly conserved within the Pancrustacea. Moreover, our data suggest that one highly conserved PISCF-type peptide, pQIRYHQCYFN-PISCF, is present in decapod crustaceans, functioning as a brain-gut paracrine/hormone.


Assuntos
Neuropeptídeos/química , Neuropeptídeos/genética , Penaeidae/genética , Penaeidae/metabolismo , Sequência de Aminoácidos , Animais , Etiquetas de Sequências Expressas , Manduca , Dados de Sequência Molecular , Neuropeptídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Peptides ; 30(2): 297-317, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19007832

RESUMO

Recently, cDNAs encoding prepro-orcokinins were cloned from the crayfish Procambarus clarkii; these cDNAs encode multiple copies of four orcokinin isoforms as well as several other peptides. Using the translated open reading frames of the P. clarkii transcripts as queries, five ESTs encoding American lobster Homarus americanus orthologs were identified via BLAST analysis. From these clones, three cDNAs, each encoding one of two distinct prepro-hormones, were characterized. Predicted processing of the deduced prepro-hormones would generate 13 peptides, 12 of which are conserved between the 2 precursors: the orcokinins NFDEIDRSGFGFN (3 copies), NFDEIDRSGFGFH (2 copies) and NFDEIDRSGFGFV (2 copies), FDAFTTGFGHN (an orcomyotropin-related peptide), SSEDMDRLGFGFN, GDY((SO3))DVYPE, VYGPRDIANLY and SAE. Additionally, one of two longer peptides (GPIKVRFLSAIFIPIAAPARSSPQQDAAAGYTDGAPV or APARSSPQQDAAAGYTDGAPV) is predicted from each prepro-hormone. MALDI-FTMS analyses confirmed the presence of all predicted orcokinins, the orcomyotropin-related peptide, and three precursor-related peptides, SSEDMDRLGFGFN, GDYDVYPE (unsulfated) and VYGPRDIANLY, in H. americanus neural tissues. SAE and the longer, unshared peptides were not detected. Similar complements of peptides are predicted from P. clarkii transcripts; the majority of these were detected in its neural tissues with mass spectrometry. Truncated orcokinins not predicted from any precursor were also detected in both species. Consistent with previous studies in the crayfish Orconectes limosus, NFDEIDRSGFGFN increased mid-/hindgut motility in P. clarkii. Surprisingly, the same peptide, although native to H. americanus, did not affect gut motility in this species. Together, our results provide the framework for future investigations of the regulation and physiological function of orcokinins/orcokinin precursor-related peptides in astacideans.


Assuntos
Astacoidea/metabolismo , Nephropidae/metabolismo , Neuropeptídeos/química , Peptídeos/química , Precursores de Proteínas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Peso Molecular , Isoformas de Proteínas/química , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Peptides ; 29(11): 1909-18, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18706463

RESUMO

Two tachykinin-related peptides (TRPs) are known in decapods, APSGFLGMRamide and TPSGFLGMRamide. The former peptide appears to be ubiquitously conserved in members of this taxon, while the latter has been suggested to be a genus (Cancer)- or infraorder (Brachyura)-specific isoform. Here, we characterized a cDNA from the American lobster Homarus americanus (infraorder Astacidea) that encodes both TRPs: six copies of APSGFLGMRamide and one of TPSGFLGMRamide. Mass spectral analyses of the H. americanus supraoesophageal ganglion (brain) and commissural ganglia confirmed the presence of both peptides in these neural tissues; both isoforms were also detected in the midgut. Physiological experiments showed that both APSGFLGMRamide and TPSGFLGMRamide are cardioactive in H. americanus, eliciting identical increases in both heart contraction frequency and amplitude. Collectively, our data represent the first genetic confirmation of TRPs in H. americanus and of TPSGFLGMRamide in any species, demonstrate that TPSGFLGMRamide is not restricted to brachyurans, and show that both this peptide and APSGFLGMRamide are brain-gut isoforms, the first peptides thus far confirmed to possess this dual tissue distribution in H. americanus. Our data also suggest a possible role for TRPs in modulating the output of the lobster heart.


Assuntos
Cardiotônicos/isolamento & purificação , Cardiotônicos/farmacologia , Nephropidae/química , Neuropeptídeos/isolamento & purificação , Taquicininas/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Química Encefálica , DNA Complementar/análise , Gânglios dos Invertebrados/química , Coração/efeitos dos fármacos , Dados de Sequência Molecular , Neuropeptídeos/química , Neuropeptídeos/farmacologia , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Taquicininas/química , Taquicininas/farmacologia
7.
J Exp Biol ; 211(Pt 9): 1434-47, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18424677

RESUMO

Modulation of neural circuits in the crustacean stomatogastric nervous system (STNS) allows flexibility in the movements of the foregut musculature. The extensive repertoire of such resulting motor patterns in dietary generalists is hypothesized to permit these animals to process varied foods. The foregut and STNS of Pugettia producta are similar to those of other decapods, but its diet is more uniform, consisting primarily of kelp. We investigated the distribution of highly conserved neuromodulators in the stomatogastric ganglion (STG) and neuroendocrine organs of Pugettia, and documented their effects on its pyloric rhythm. Using immunohistochemistry, we found that the distributions of Cancer borealis tachykinin-related peptide I (CabTRP I), crustacean cardioactive peptide (CCAP), proctolin, red pigment concentrating hormone (RPCH) and tyrosine hydroxylase (dopamine) were similar to those of other decapods. For all peptides except proctolin, the isoforms responsible for the immunoreactivity were confirmed by mass spectrometry to be the authentic peptides. Only two modulators had physiological effects on the pyloric circuit similar to those seen in other species. In non-rhythmic preparations, proctolin and the muscarinic acetylcholine agonist oxotremorine consistently initiated a full pyloric rhythm. Dopamine usually activated a pyloric rhythm, but this pattern was highly variable. In only about 25% of preparations, RPCH activated a pyloric rhythm similar to that seen in other species. CCAP and CabTRP I had no effect on the pyloric rhythm. Thus, whereas Pugettia possesses all the neuromodulators investigated, its pyloric rhythm, when compared with other decapods, appears less sensitive to many of them, perhaps because of its limited diet.


Assuntos
Braquiúros/fisiologia , Gânglios dos Invertebrados/citologia , Sistemas Neurossecretores/efeitos dos fármacos , Neurotransmissores/farmacologia , Piloro/inervação , Animais , Braquiúros/efeitos dos fármacos , Eletrofisiologia , Gânglios dos Invertebrados/efeitos dos fármacos , Imuno-Histoquímica , Microscopia de Fluorescência , Piloro/efeitos dos fármacos , Piloro/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Washington
8.
Gen Comp Endocrinol ; 156(2): 347-60, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18308319

RESUMO

Recently, we identified the peptide VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system (STNS) of the American lobster Homarus americanus using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS). Given that H. americanus is the only species thus far shown to possess this peptide, and that a second SIFamide isoform, Gly(1)-SIFamide, is broadly conserved in other decapods, including another astacidean, the crayfish Procambarus clarkii, we became interested both in confirming our identification of Val(1)-SIFamide via molecular methods and in determining the extent to which this isoform is conserved within other members of the infraorder Astacidea. Here, we present the identification and characterization of an H. americanus prepro-SIFamide cDNA that encodes the Val(1) isoform. Moreover, we demonstrate via MALDI-FTMS the presence of Val(1)-SIFamide in a second Homarus species, Homarus gammarus. In contrast, only the Gly(1) isoform was detected in the other astacideans investigated, including the lobster Nephrops norvegicus, a member of the same family as Homarus, and the crayfish Cherax quadricarinatus, P. clarkii and Pacifastacus leniusculus, which represent members of each of the extant families of freshwater astacideans. These results suggest that Val(1)-SIFamide may be a genus (Homarus)-specific isoform. Interestingly, both Val(1)- and Gly(1)-SIFamide possess an internal dibasic site, Arg(3)-Lys(4), raising the possibility of the ubiquitously conserved isoform PPFNGSIFamide. However, this octapeptide was not detected via MALDI-FTMS in any of the investigated species, and when applied to the isolated STNS of H. americanus possessed little bioactivity relative to the full-length Val(1) isoform. Thus, it appears that the dodeca-variants Val(1)- and Gly(1)-SIFamide are the sole bioactive isoforms of this peptide family in clawed lobsters and freshwater crayfish.


Assuntos
Astacoidea/metabolismo , Nephropidae/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/biossíntese , DNA Complementar/genética , Eletrofisiologia , Etiquetas de Sequências Expressas , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Gânglios dos Invertebrados/fisiologia , Biblioteca Gênica , Espectrometria de Massas , Dados de Sequência Molecular , Neurônios/fisiologia , Peptídeos/genética , Peptídeos/fisiologia , Biossíntese de Proteínas , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
J Comp Neurol ; 508(2): 197-211, 2008 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-18311785

RESUMO

Two beta-pigment-dispersing hormone (beta-PDH) isoforms have been identified in several decapod crustaceans, including the crab Cancer productus, but whether these peptides serve common or distinct physiological roles remains to be elucidated. Here we show that the distribution of beta-PDH-like immunoreactivity in the nervous system of C. productus is similar to that found in other brachyurans, suggesting roles as both a circulating hormone and a locally released transmitter for members of this peptide family. cDNAs encoding NSELINSILGLPKVMNDAamide (authentic beta-PDH; here termed Canpr-beta-PDH I) or NSELINSLLGLSRLMNEAamide [corrected](Canpr-beta-PDH II) were cloned. Double in situ hybridization revealed that these two beta-PDH isoforms are differentially distributed within the eyestalk. For example, in most neurons between the medulla interna (MI) and the medulla terminalis (MT), both isoforms appear present; however, in some neurons in this region, mRNA for only one or the other isoform was detected. Likewise, only prepro-beta-pdh I mRNA was detected in the somata of the lamina ganglionaris (LG) and in the brain. By direct tissue mass spectrometry, only Canpr-beta-PDH II was detected in the neurosecretory sinus gland (SG), whereas Canpr-beta-PDH I was found in all other parts of the eyestalk. Collectively, these data suggest distinct functions for each of the C. productus beta-PDHs; Canpr-beta-PDH II appears to be a neurohormone in the SG, whereas Canpr-beta-PDH I may function as a local transmitter/modulator. Our data support the hypothesis that duplication and subsequent mutation of a common neuropeptide gene may underlie the evolution of two differentially distributed transcripts that serve distinct physiological roles.


Assuntos
Braquiúros/metabolismo , Clonagem Molecular/métodos , Expressão Gênica/fisiologia , Peptídeos/genética , Peptídeos/metabolismo , Animais , Braquiúros/ultraestrutura , Análise de Fourier , Espectrometria de Massas , Microscopia Confocal , Sistema Nervoso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Gen Comp Endocrinol ; 156(2): 246-64, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18321503

RESUMO

The development of expressed sequence tags (ESTs) for crustacean cDNA libraries and their deposition in publicly accessible databases has generated a rich resource for peptide discovery in this commercially and ecologically important arthropod subphylum. Here, we have conducted in silico searches of these databases for unannotated ESTs encoding putative neuropeptide precursors using the BLAST program tblastn, and have predicted the mature forms of the peptides encoded by them. The primary strategy used was to query the database with known decapod prepro-hormone sequences or, in some instances, insect precursor protein sequences. For neuropeptides for which no prepro-hormones are known, the peptides themselves were used as queries. For those peptides expected to originate from a common precursor, the individual sequences were combined, with each peptide flanked by a dibasic processing site and, if amidated, a glycine residue. Using these approaches, 13 unannotated ESTs encoding putative neuropeptide precursors were found. For example, using the first strategy, putative Marsupenaeus japonicus prepro-hormones encoding B-type allatostatins, neuropeptide F (NPF), and orcokinins were identified. Similarly, several Homarus americanus ESTs encoding putative orcokinin precursors were found. In addition to the decapod prepro-hormones, ESTs putatively encoding a NPF isoform and a red pigment concentrating hormone-like peptide were identified from the cladoceran Daphnia magna, as was one EST putatively encoding multiple tachykinin-related peptides from the isopod Eurydice pulchra. Using the second strategy, we identified a Carcinus maenas EST encoding HIGSLYRamide, a peptide recently discovered via mass spectrometry from Cancer productus. Using mass spectral methods we confirmed that this peptide is also present in Carcinus maenas. Collectively over 50 novel crustacean peptides were predicted from the identified ESTs, providing a strong foundation for future investigations of the evolution, regulation and function of these and related molecules in this arthropod taxon.


Assuntos
Crustáceos/química , Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Braquiúros , Simulação por Computador , Daphnia , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Análise de Fourier , Espectrometria de Massas , Dados de Sequência Molecular , Nephropidae , Neuropeptídeos/química , Neuropeptídeos/isolamento & purificação , Oligopeptídeos/química , Oligopeptídeos/genética , Penaeidae , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/química , Software , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Taquicininas/química , Taquicininas/genética , Transcrição Gênica
11.
Gen Comp Endocrinol ; 154(1-3): 184-92, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17698069

RESUMO

Over the past decade, mass spectrometry has become a prominent technique for identifying peptide hormones. In crustaceans, studies directed at characterizing the peptide complements present in neuroendocrine structures have generally involved the isolation of tissue from a large number of individuals, which are pooled, extracted, purified, and then analyzed via chromatographic techniques coupled with mass spectrometry. While this approach provides information on the peptides present in the population of animals used as the tissue source, data on the peptide complement present in any individual animal are lost. Direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) of single tissues has the potential to identify differences in peptide expression between individuals. Here, we have used direct tissue MALDI-FTMS of individual sinus glands (SGs) to show that the four isoforms of crustacean hyperglycemic hormone precursor-related peptide (CPRP) identified previously from pooled Cancer productus SGs (i.e. Fu, Q., Christie, A.E., Li, L. 2005. Mass spectrometric characterization of crustacean hyperglycemic hormone precursor-related peptides (CPRPs) from the sinus gland of the crab, Cancer productus. Peptides 26, 2137-2150.) are differentially distributed in conserved patterns among individual crabs. Of the crabs examined, approximately 61% of the individuals possessed Capr-CPRP I and II, but not III or IV, approximately 26% Capr-CPRP I, II and III, but not IV, and approximately 13% Capr-CPRP I, II and IV, but not III. Our findings set the stage for future molecular investigations on the origin(s) of this individual-specific variation in CPRP complement, as well as investigations of the function and regulation of the individual isoforms. These data also lend a cautionary note to the assumption that the peptides identified via pooled tissues reveal an accurate picture of the peptides present in any given individual.


Assuntos
Braquiúros/química , Braquiúros/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/análise , Precursores de Proteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Braquiúros/anatomia & histologia , Feminino , Análise de Fourier , Masculino , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Distribuição Tecidual
12.
J Neurochem ; 101(5): 1351-66, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17437551

RESUMO

In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern.


Assuntos
Braquiúros/química , Sistema Digestório/metabolismo , Sistema Nervoso/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/fisiologia , Oligopeptídeos/análise , Oligopeptídeos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Braquiúros/citologia , Braquiúros/metabolismo , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Receptores de Taquicininas/agonistas , Receptores de Taquicininas/antagonistas & inibidores , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Taquicininas/química
13.
Gen Comp Endocrinol ; 152(1): 1-7, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17420018

RESUMO

In invertebrates, peptides possessing the carboxy (C)-terminal motif -RXRFamide have been proposed as the homologs of vertebrate neuropeptide Y (NPY). Using matrix assisted laser desorption/ionization mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation and chemical and enzymatic reactions, we have identified the peptide pEGFYSQRYamide from the neuroendocrine pericardial organ (PO) of the crab Pugettia producta. This peptide is likely the same as that previously reported, but misidentified, as PAFYSQRYamide in several earlier reports (e.g. [Li, L., Kelley, W.P., Billimoria, C.P., Christie, A.E., Pulver, S.R., Sweedler, J.V., Marder, E. 2003. Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J. Neurochem. 87, 642-656; Fu, Q., Kutz, K.K., Schmidt, J.J., Hsu, Y.W., Messinger, D.I., Cain, S.D., de la Iglesia, H.O., Christie, A.E., Li, L. 2005. Hormone complement of the Cancer productus sinus gland and pericardial organ: an anatomical and mass spectrometric investigation. J. Comp. Neurol. 493, 607-626.]). The -QRYamide motif contained in pEGFYSQRYamide is identical to that present in many vertebrate members of the NPY superfamily. Mass spectrometric analysis conducted on the POs of several other decapods showed that pEGFYSQRYamide is present in three other brachyurans (Cancer borealis, Cancer irroratus and Cancer productus) as well as in one species from another decapod infraorder (Lithodes maja, an anomuran). Thus, our findings show that at least some invertebrates possess NPY-like peptides in addition to those exhibiting an -RXRFamide C-terminus, and raise the question as to whether the invertebrate -QRYamides are functionally and/or evolutionarily related to the NPY superfamily.


Assuntos
Braquiúros/metabolismo , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Espectrometria de Massas , Hormônios Peptídicos/genética
14.
J Exp Biol ; 210(Pt 4): 699-714, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17267655

RESUMO

Over a quarter of a century ago, Mykles described the presence of putative endocrine cells in the midgut epithelium of the crab Cancer magister (Mykles, 1979). In the years that have followed, these cells have been largely ignored and nothing is known about their hormone content or the functions they play in this species. Here, we used a combination of immunohistochemistry and mass spectrometric techniques to investigate these questions. Using immunohistochemistry, we identified both SIFamide- and tachykinin-related peptide (TRP)-like immunopositive cells in the midgut epithelium of C. magister, as well as in that of Cancer borealis and Cancer productus. In each species, the SIFamide-like labeling was restricted to the anterior portion of the midgut, including the paired anterior midgut caeca, whereas the TRP-like immunoreactivity predominated in the posterior midgut and the posterior midgut caecum. Regardless of location, label or species, the morphology of the immunopositive cells matched that of the putative endocrine cells characterized ultrastructurally by Mykles (Mykles, 1979). Matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry identified the peptides responsible for the immunoreactivities as GYRKPPFNGSIFamide (Gly1-SIFamide) and APSGFLGMRamide [Cancer borealis tachykinin-related peptide Ia (CabTRP Ia)], respectively, both of which are known neuropeptides of Cancer species. Although the function of these midgut-derived peptides remains unknown, we found that both Gly1-SIFamide and CabTRP Ia were released when the midgut was exposed to high-potassium saline. In addition, CabTRP Ia was detectable in the hemolymph of crabs that had been held without food for several days, but not in that of fed animals, paralleling results that were attributed to TRP release from midgut endocrine cells in insects. Thus, one function that midgut-derived CabTRP Ia may play in Cancer species is paracrine/hormonal control of feeding-related behavior, as has been postulated for TRPs released from homologous cells in insects.


Assuntos
Braquiúros/química , Células Enteroendócrinas/química , Neuropeptídeos/genética , Oligopeptídeos/genética , Sequência de Aminoácidos , Animais , Células Enteroendócrinas/ultraestrutura , Imuno-Histoquímica , Microscopia de Fluorescência , Dados de Sequência Molecular , Neuropeptídeos/análise , Oligopeptídeos/análise , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
J Biol Chem ; 280(35): 30888-98, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-15998636

RESUMO

Arginine methylation can affect both nucleocytoplasmic transport and protein-protein interactions of RNA-binding proteins. These effects are seen in cells that lack the yeast hnRNP methyltransferase (HMT1), raising the question of whether effects on specific proteins are direct or indirect. The presence of multiple arginines in individual methylated proteins also raises the question of whether overall methylation or methylation of a subset of arginines affects protein function. We have used the yeast mRNA-binding protein Npl3 to address these questions in vivo. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry was used to identify 17 methylated arginines in Npl3 purified from yeast: whereas 10 Arg-Gly-Gly (RGG) tripeptides were exclusively dimethylated, variable levels of methylation were found for 5 RGG and 2 RG motif arginines. We constructed a set of Npl3 proteins in which subsets of the RGG arginines were mutated to lysine. Expression of these mutant proteins as the sole form of Npl3 specifically affected growth of a strain that requires Hmt1. Although decreased growth generally correlated with increased numbers of Arg-to-Lys mutations, lysine substitutions in the N terminus of the RGG domain showed more severe effects. Npl3 with all 15 RGG arginines mutated to lysine exited the nucleus independent of Hmt1, indicating a direct effect of methylation on Npl3 transport. These mutations also resulted in a decreased, methylation-independent interaction of Npl3 with transcription elongation factor Tho2 and inhibited Npl3 self-association. These results support a model in which arginine methylation facilitates Npl3 export directly by weakening contacts with nuclear proteins.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Arginina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Humanos , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Anal Chem ; 77(11): 3594-606, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15924394

RESUMO

Vacuum UV matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry (FTMS) has been applied to the direct analysis of crustacean neuronal tissues using in-cell accumulation techniques to improve sensitivity. In an extension of previous work by Li and co-workers (Kutz, K. K.; Schmidt, J. J.; Li, L. Anal. Chem. 2004, 76, 5630-5640), and with a focus on the Maine lobster, Homarus americanus, we report that many peaks appearing in direct tissue spectra from crustaceans result from the metastable decay of aspartate-containing neuropeptides with localized protonation sites. We report on mass spectral characteristics of crustacean neuropeptides under MALDI-FTMS conditions and show how fragments formed by Asp-Xxx cleavages can be used to advantage for the identification of orcokinin peptides, a ubiquitous family of crustacean neuropeptides with a highly conserved N-terminus sequence. We show that predicted fragment ion fingerprints (FIFs) can be used to screen internally calibrated direct tissue spectra to provide high-confidence identification of previously identified orcokinin peptides. We use FIFs, identified based upon characteristic neutral losses, to screen for new members of the orcokinin family. Sustained off-resonance irradiation of y-series fragment ions is used to sequence the variable C-terminus. We apply these techniques to the analysis of CoG tissues from Cancer borealis and Panulirus interruptus and show that orcokinins in P. interruptus were misidentified in a previous MALDI-TOF study.


Assuntos
Decápodes/química , Neuropeptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Lasers , Neuropeptídeos/química , Neuropeptídeos/efeitos da radiação , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA