Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(34): 7502-7519, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34424704

RESUMO

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 × 10-12 × exp (505/T) cm3 molecule-1 s-1 to the experimental value kexp,300K = 2.8 × 10-11 cm3 molecule-1 s-1. The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C═NH], 2-iminopropanol [(CH3)(CH2OH)C═NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO2, were detected in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave ΔvapH = 80 ± 16 kJ mol-1 and an estimated vapor pressure of (1.3 ± 0.3) × 10-5 Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.

2.
Bioorg Med Chem ; 26(12): 3580-3587, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29866479

RESUMO

The oxoeicosanoid receptor 1 (OXER1) is a member of the G-protein coupled receptors (GPCR) family, and is involved in inflammatory processes and oncogenesis. As such it is an attractive target for pharmacological intervention. The present study aimed to shed light on the molecular fundaments of OXER1 modulation using chemical probes structurally related to the natural agonist 5-oxo-ETE. In a first step, 5-oxo-ETE and its closely related derivatives (5-oxo-EPE and 4-oxo-DHA) were obtained by conducting concise and high-yielding syntheses. The biological activity of obtained compounds was assessed in terms of potency (EC50) and efficacy (Emax) for arrestin recruitment. Finally, molecular modelling and simulation were used to explore binding characteristics of 5-oxo-ETE and derivatives with the aim to rationalize biological activity. Our data suggest that the tested 5-oxo-ETE derivatives (i) insert quickly into the membrane, (ii) access the receptor via transmembrane helices (TMs) 5 and 6 from the membrane side and (iii) drive potency and efficacy by differential interaction with TM5 and 7. Most importantly, we found that the methyl ester of 5-oxo-ETE (1a) showed even a higher maximum response than the natural agonist (1). In contrast, shifting the 5-oxo group into position 4 results in inactive compounds (4-oxo DHA compounds (3) and (3a)). All in all, our study provides relevant structural data that help understanding better OXER1 functionality and its modulation. The structural information presented herein will be useful for designing new lead compounds with desired signalling profiles.


Assuntos
Ácidos Araquidônicos/química , Receptores Eicosanoides/agonistas , Ácidos Araquidônicos/síntese química , Ácidos Araquidônicos/metabolismo , Sítios de Ligação , Desenho de Fármacos , Ácido Eicosapentaenoico/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Eicosanoides/metabolismo
3.
J Phys Chem A ; 120(35): 6970-7, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509322

RESUMO

The reaction rates of (CH3)2NNO and (CH3CH2)2NNO with NO3 radicals were determined relative to formaldehyde (CH2O) and ethene (CH2CH2) at 298 ± 2 K and 1013 ± 10 hPa in purified air by long path FTIR spectroscopy. The reactions are too slow to be of importance at atmospheric conditions: kNO3+(CH3)2NNO = (1.47 ± 0.23) × 10(-16) and kNO3+(CH3CH2)2NNO = (5.1 ± 0.4) × 10(-16) cm(3) molecule(-1) s(-1) (1σ error limits). Theoretical calculations, based on CCSD(T*)-F12a/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ results, predict the corresponding imines as the sole primary products in nitrosamine reactions with NO3 and OH radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA