Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2314367, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532642

RESUMO

Broad size distributions and poor long-term colloidal stability of microRNA-carrying nanoparticles, especially those formed by polyelectrolyte complexation, represent major hurdles in realizing their clinical translation. Herein, peptide design is used alongside optimized flash nanocomplexation (FNC) to produce uniform peptide-based miRNA particles of exceptional stability that display anticancer activity against mesothelioma in vitro and in vivo. Modulating the content and display of lysine-based charge from small intrinsically disordered peptides used to complex miRNA proves essential in achieving stable colloids. FNC facilitates kinetic isolation of the mechanistic steps involved in particle formation to allow the preparation of particles of discrete size in a highly reproducible, scalable, and continuous manner, facilitating pre-clinical studies. To the best of the authors knowledge, this work represents the first example of employing FNC to prepare polyelectrolyte complexes of miRNA and peptide. Encapsulation of these particles into an injectable hydrogel matrix allows for their localized in vivo delivery by syringe. A one-time injection of a gel containing particles composed of miRNA-215-5p and the peptide PKM1 limits tumor progression in a xenograft model of mesothelioma.

2.
Cell Rep ; 42(7): 112755, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436899

RESUMO

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Anti-HIV , Peptídeos
3.
J Virol ; 97(5): e0160422, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098956

RESUMO

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Cobaias , Camundongos , Anticorpos Anti-HIV , Isotipos de Imunoglobulinas , Vacinação , Peptídeos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Infecções por HIV/prevenção & controle
4.
Immunity ; 55(11): 2135-2148.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36306784

RESUMO

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Cricetinae , Camundongos , Animais , Humanos , Proteínas do Envelope Viral , Cricetulus , Glicoproteínas de Membrana , Células CHO
5.
Cell Rep ; 41(5): 111528, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302375

RESUMO

The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Testes de Neutralização , Anticorpos Antivirais/uso terapêutico , Proteínas do Envelope Viral , Glicoproteínas de Membrana/genética , Anticorpos Neutralizantes/uso terapêutico
6.
Cell Rep ; 35(1): 108937, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826898

RESUMO

Soluble "SOSIP"-stabilized envelope (Env) trimers are promising HIV-vaccine immunogens. However, they induce high-titer responses against the glycan-free trimer base, which is occluded on native virions. To delineate the effect on base responses of priming with immunogens targeting the fusion peptide (FP) site of vulnerability, here, we quantify the prevalence of trimer-base antibody responses in 49 non-human primates immunized with various SOSIP-stabilized Env trimers and FP-carrier conjugates. Trimer-base responses account for ∼90% of the overall trimer response in animals immunized with trimer only, ∼70% in animals immunized with a cocktail of SOSIP trimer and FP conjugate, and ∼30% in animals primed with FP conjugates before trimer immunization. Notably, neutralization breadth in FP-conjugate-primed animals correlates inversely with trimer-base responses. Our data provide methods to quantify the prevalence of trimer-base responses and reveal that FP-conjugate priming, either alone or as part of a cocktail, can reduce the trimer-base response and improve the neutralization outcome.


Assuntos
Formação de Anticorpos/imunologia , HIV-1/imunologia , Peptídeos/imunologia , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Feminino , Humanos , Imunização , Fragmentos Fab das Imunoglobulinas/imunologia , Macaca mulatta , Masculino , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA