Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; 17(7): 673-683, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35549603

RESUMO

INTRODUCTION: Current findings on multifactorial diseases with a complex pathomechanism confirm that multi-target drugs are more efficient ways in treating them as opposed to single-target drugs. However, to design multi-target ligands, a number of factors and challenges must be taken into account. AREAS COVERED: In this perspective, we summarize the concept of application of multi-target drugs for the treatment of complex diseases such as neurodegenerative diseases, schizophrenia, diabetes, and cancer. We discuss the aspects of target selection for multifunctional ligands and the application of in silico methods in their design and optimization. Furthermore, we highlight other challenges such as balancing affinities to different targets and drug-likeness of obtained compounds. Finally, we present success stories in the design of multi-target ligands for the treatment of common complex diseases. EXPERT OPINION: Despite numerous challenges resulting from the design of multi-target ligands, these efforts are worth making. Appropriate target selection, activity balancing, and ligand drug-likeness belong to key aspects in the design of ligands acting on multiple targets. It should be emphasized that in silico methods, in particular inverse docking, pharmacophore modeling, machine learning methods and approaches derived from network pharmacology are valuable tools for the design of multi-target drugs.


Assuntos
Doenças Neurodegenerativas , Esquizofrenia , Desenho de Fármacos , Humanos , Ligantes , Doenças Neurodegenerativas/tratamento farmacológico , Esquizofrenia/tratamento farmacológico
2.
Expert Opin Drug Discov ; 16(1): 101-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915109

RESUMO

INTRODUCTION: Schizophrenia is a complex psychiatric disease (or a conglomeration of disorders) manifesting with positive, negative and cognitive symptoms. The pathophysiology of schizophrenia is not completely known; however, it involves many neurotransmitters and their receptors. In order to treat schizophrenia, drugs need to be multi-target drugs. Indeed, the action of second and third generation antipsychotics involves interactions with many receptors, belonging mainly to aminergic GPCRs. AREAS COVERED: In this review, the authors summarize current concepts of schizophrenia with the emphasis on the modern dopaminergic, serotoninergic, and glutamatergic hypotheses. Next, they discuss treatments of the disease, stressing multi-target antipsychotics. They cover different aspects of design of multi-target ligands, including the application of molecular modeling approaches for the design and benefits and limitations of multifunctional compounds. Finally, they present successful case studies of multi-target drug design against schizophrenia. EXPERT OPINION: Treatment of schizophrenia requires the application of multi-target drugs. While designing single target drugs is relatively easy, designing multifunctional compounds is a challenge due to the necessity to balance the affinity to many targets, while avoiding promiscuity and the problems with drug-likeness. Multi-target drugs bring many benefits: better efficiency, fewer adverse effects, and drug-drug interactions and better patient compliance to drug regime.


Assuntos
Antipsicóticos/farmacologia , Desenho de Fármacos , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/efeitos adversos , Interações Medicamentosas , Humanos , Ligantes , Modelos Moleculares , Terapia de Alvo Molecular , Esquizofrenia/fisiopatologia
3.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309037

RESUMO

Polypharmacology is nowadays considered an increasingly crucial aspect in discovering new drugs as a number of original single-target drugs have been performing far behind expectations during the last ten years. In this scenario, multi-target drugs are a promising approach against polygenic diseases with complex pathomechanisms such as schizophrenia. Indeed, second generation or atypical antipsychotics target a number of aminergic G protein-coupled receptors (GPCRs) simultaneously. Novel strategies in drug design and discovery against schizophrenia focus on targets beyond the dopaminergic hypothesis of the disease and even beyond the monoamine GPCRs. In particular these approaches concern proteins involved in glutamatergic and cholinergic neurotransmission, challenging the concept of antipsychotic activity without dopamine D2 receptor involvement. Potentially interesting compounds include ligands interacting with glycine modulatory binding pocket on N-methyl-d-aspartate (NMDA) receptors, positive allosteric modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, positive allosteric modulators of metabotropic glutamatergic receptors, agonists and positive allosteric modulators of α7 nicotinic receptors, as well as muscarinic receptor agonists. In this review we discuss classical and novel drug targets for schizophrenia, cover benefits and limitations of current strategies to design multi-target drugs and show examples of multi-target ligands as antipsychotics, including marketed drugs, substances in clinical trials, and other investigational compounds.


Assuntos
Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Biomarcadores , Descoberta de Drogas , Terapia de Alvo Molecular , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Animais , Antipsicóticos/química , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Ligantes , Esquizofrenia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA