Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 178, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516843

RESUMO

BACKGROUND: Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined. METHODS: We generated mice with tamoxifen-induced, Mi/MΦ-specific knockout (mKO) of STAT1 driven by Cx3cr1CreER. Expression of STAT1 was examined in the brain by flow cytometry and RNA sequencing after ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The impact of STAT1 mKO on neuronal cell death, Mi/MΦ phenotype, and brain inflammation profiles were examined 3-5 days after MCAO. Neurological deficits and the integrity of gray and white matter were assessed for 5 weeks after MCAO by various neurobehavioral tests and immunohistochemistry. RESULTS: STAT1 was activated in Mi/MΦ at the subacute stage (3 days) after MCAO. Selective deletion of STAT1 in Mi/MΦ did not alter neuronal cell death or infarct size at 24 h after MCAO, but attenuated Mi/MΦ release of high mobility group box 1 and increased arginase 1-producing Mi/MΦ 3d after MCAO, suggesting boosted inflammation-resolving responses of Mi/MΦ. As a result, STAT1 mKO mice had mitigated brain inflammation at the subacute stage after MCAO and less white matter injury in the long term. Importantly, STAT1 mKO was sufficient to improve functional recovery for at least 5 weeks after MCAO in both male and female mice. CONCLUSIONS: Mi/MΦ-targeted STAT1 KO does not provide immediate neuroprotection but augments inflammation-resolving actions of Mi/MΦ, thereby facilitating long-term functional recovery after stroke. STAT1 is, therefore, a promising therapeutic target to harness beneficial Mi/MΦ responses and improve long-term outcomes after ischemic stroke.


Assuntos
Encefalite , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Feminino , Masculino , Camundongos , Inflamação , Macrófagos , Microglia
2.
Proc Natl Acad Sci U S A ; 120(25): e2300012120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307473

RESUMO

Aging compromises the repair and regrowth of brain vasculature and white matter during stroke recovery, but the underlying mechanisms remain elusive. To understand how aging jeopardizes brain tissue repair after stroke, we performed single-cell transcriptomic profiling of young adult and aged mouse brains at acute (3 d) and chronic (14 d) stages after ischemic injury, focusing a priori on the expression of angiogenesis- and oligodendrogenesis-related genes. We identified unique subsets of endothelial cells (ECs) and oligodendrocyte (OL) progenitors in proangiogenesis and pro-oligodendrogenesis phenotypic states 3 d after stroke in young mice. However, this early prorepair transcriptomic reprogramming was negligible in aged stroke mice, consistent with the impairment of angiogenesis and oligodendrogenesis observed during the chronic injury stages after ischemia. In the stroke brain, microglia and macrophages (MG/MΦ) may drive angiogenesis and oligodendrogenesis through a paracrine mechanism. However, this reparative cell-cell cross talk between MG/MΦ and ECs or OLs is impeded in aged brains. In support of these findings, permanent depletion of MG/MΦ via antagonism of the colony-stimulating factor 1 receptor resulted in remarkably poor neurological recovery and loss of poststroke angiogenesis and oligodendrogenesis. Finally, transplantation of MG/MΦ from young, but not aged, mouse brains into the cerebral cortices of aged stroke mice partially restored angiogenesis and oligodendrogenesis and rejuvenated sensorimotor function and spatial learning and memory. Together, these data reveal fundamental mechanisms underlying the age-related decay in brain repair and highlight MG/MΦ as effective targets for promoting stroke recovery.


Assuntos
Células Endoteliais , Acidente Vascular Cerebral , Animais , Camundongos , Encéfalo , Macrófagos , Análise de Sequência de RNA
3.
Proc Natl Acad Sci U S A ; 117(51): 32679-32690, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33293423

RESUMO

Intracerebral hemorrhage (ICH) is a devastating form of stroke affecting millions of people worldwide. Parenchymal hematoma triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia and macrophages carry out hematoma clearance, thereby facilitating functional recovery after ICH. Here, we elucidate a pivotal role for the interleukin (IL)-4)/signal transducer and activator of transcription 6 (STAT6) axis in promoting long-term recovery in both blood- and collagenase-injection mouse models of ICH, through modulation of microglia/macrophage functions. In both ICH models, STAT6 was activated in microglia/macrophages (i.e., enhanced expression of phospho-STAT6 in Iba1+ cells). Intranasal delivery of IL-4 nanoparticles after ICH hastened STAT6 activation and facilitated hematoma resolution. IL-4 treatment improved long-term functional recovery in young and aged male and young female mice. In contrast, STAT6 knockout (KO) mice exhibited worse outcomes than WT mice in both ICH models and were less responsive to IL-4 treatment. The construction of bone marrow chimera mice demonstrated that STAT6 KO in either the CNS or periphery exacerbated ICH outcomes. STAT6 KO impaired the capacity of phagocytes to engulf red blood cells in the ICH brain and in primary cultures. Transcriptional analyses identified lower level of IL-1 receptor-like 1 (ST2) expression in microglia/macrophages of STAT6 KO mice after ICH. ST2 KO diminished the beneficial effects of IL-4 after ICH. Collectively, these data confirm the importance of IL-4/STAT6/ST2 signaling in hematoma resolution and functional recovery after ICH. Intranasal IL-4 treatment warrants further investigation as a clinically feasible therapy for ICH.


Assuntos
Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Acidente Vascular Cerebral Hemorrágico/metabolismo , Interleucina-4/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Feminino , Hematoma/tratamento farmacológico , Hematoma/patologia , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Acidente Vascular Cerebral Hemorrágico/patologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-4/administração & dosagem , Interleucina-4/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Teste de Desempenho do Rota-Rod , Fator de Transcrição STAT6/genética , Transdução de Sinais
4.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31619589

RESUMO

Efferocytosis, or phagocytic clearance of dead/dying cells by brain-resident microglia and/or infiltrating macrophages, is instrumental for inflammation resolution and restoration of brain homeostasis after stroke. Here, we identify the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling axis as a potentially novel mechanism that orchestrates microglia/macrophage responses in the ischemic brain. Activation of STAT6 was observed in microglia/macrophages in the ischemic territory in a mouse model of stroke and in stroke patients. STAT6 deficiency resulted in reduced clearance of dead/dying neurons, increased inflammatory gene signature in microglia/macrophages, and enlarged infarct volume early after experimental stroke. All of these pathological changes culminated in an increased brain tissue loss and exacerbated long-term functional deficits. Combined in vivo analyses using BM chimeras and in vitro experiments using microglia/macrophage-neuron cocultures confirmed that STAT6 activation in both microglia and macrophages was essential for neuroprotection. Adoptive transfer of WT macrophages into STAT6-KO mice reduced accumulation of dead neurons in the ischemic territory and ameliorated brain infarction. Furthermore, decreased expression of Arg1 in STAT6-/- microglia/macrophages was responsible for impairments in efferocytosis and loss of antiinflammatory modality. Our study suggests that efferocytosis via STAT6/Arg1 modulates microglia/macrophage phenotype, accelerates inflammation resolution, and improves stroke outcomes.


Assuntos
Arginase/metabolismo , Infarto Encefálico/imunologia , Macrófagos/imunologia , Microglia/imunologia , Fator de Transcrição STAT6/metabolismo , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Infarto Encefálico/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Neurônios , Fagocitose , Cultura Primária de Células , Fator de Transcrição STAT6/genética , Transdução de Sinais/imunologia
5.
Stroke ; 49(11): 2733-2742, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30355201

RESUMO

Background and Purpose- Adoptive transfer of regulatory T cells (Tregs) protect against stroke; however, Treg-based therapy raises concerns in stroke patients with cancer because of the immunosuppressive function of Tregs. The purpose of this study was to investigate the role of Tregs in cerebral ischemic brain injury with concomitant cancer. Methods- To establish a cancer phenotype, MC38 colon cancer or B16 melanoma cells (5×105/mice) were injected subcutaneously into C57BL/6J mice 2 to 3 weeks before distal middle cerebral artery occlusion surgery. Infarct volume, neuroinflammation, and Tregs infiltration were measured by 2,3,5-triphenyltetrazolium chloride staining, immunofluorescence staining, real-time polymerase chain reaction, and flow cytometry. Mechanistically, Nrp1 (neuropilin-1) monoclonal antibody was used to block the Nrp1 effect on Tregs ex vivo before being transferred into recombination activating gene 1 (Rag1-/-) stroke mice, which are devoid of T and B cells, or a Nrp1 neutralization antibody was injected systemically into cancer-bearing wild-type mice after stroke. Results- Cancer-bearing mice with stroke exhibited augmented neuroinflammation and fewer Tregs in the brain, but more infiltration of Tregs to the tumor was apparent after distal middle cerebral artery occlusion. Depletion of Tregs increased infarct volume in stroke mice but did not further exacerbate brain injury in cancer-bearing stroke mice. Nrp1 blocking ex vivo or Nrp1 systemic neutralization attenuated ischemic brain injury and reversed accumulation of Tregs within tumor after stroke in cancer-bearing mice. Conclusions- Nrp1 signaling mediated accumulation of Tregs within tumor might play a critical role in exacerbating ischemic brain injury in cancer-bearing mice and may represent a promising immune modulatory target for the combined condition of cancer and stroke.


Assuntos
Encéfalo/imunologia , Infarto da Artéria Cerebral Média/imunologia , Neoplasias/imunologia , Neuropilina-1/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral/transplante , Neoplasias do Colo , Proteínas de Homeodomínio/genética , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Melanoma Experimental , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neoplasias/complicações , Neuropilina-1/metabolismo
6.
Stroke ; 48(7): 1941-1947, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28546328

RESUMO

BACKGROUND AND PURPOSE: Dysregulation of the miR-15a/16-1 cluster in plasma has been reported in patients with stroke as a potential biomarker for diagnostic and prognostic use. However, the essential role and therapeutic potential of the miR-15a/16-1 cluster in ischemic stroke are poorly understood. This study is aimed at investigating the regulatory role of the miR-15a/16-1 cluster in ischemic brain injury and insight mechanisms. METHODS: Adult male miR-15a/16-1 knockout and wild-type mice, or adult male C57 BL/6J mice injected via tail vein with the miR-15a/16-1-specific inhibitor (antagomir, 30 pmol/g), were subjected to 1 hour of middle cerebral artery occlusion and 72 hours of reperfusion. The neurological scores, brain infarct volume, brain water content, and neurobehavioral tests were then evaluated and analyzed. To explore underlying signaling pathways associated with alteration of miR-15a/16-1 activity, major proinflammatory cytokines were measured by quantitative polymerase chain reaction or ELISA and antiapoptotic proteins were examined by Western blotting. RESULTS: Genetic deletion of the miR-15a/16-1 cluster or intravenous delivery of miR-15a/16-1 antagomir significantly reduced cerebral infarct size, decreased brain water content, and improved neurological outcomes in stroke mice. Inhibition of miR-15a/16-1 significantly decreased the expression of the proinflammatory cytokines interleukin-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule 1, tumor necrosis factor alpha, and increased Bcl-2 and Bcl-w levels in the ischemic brain regions. CONCLUSIONS: Our data indicate that pharmacological inhibition of the miR-15a/16-1 cluster reduces ischemic brain injury via both upregulation of antiapoptotic proteins and suppression of proinflammatory molecules. These results suggest that the miR-15a/16-1 cluster is a novel therapeutic target for ischemic stroke.


Assuntos
Antagomirs/farmacologia , Isquemia Encefálica/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Antagomirs/administração & dosagem , Isquemia Encefálica/imunologia , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo
7.
Mol Neurobiol ; 53(1): 320-330, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432887

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Infarto Encefálico/complicações , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Cálcio/metabolismo , Citoesqueleto/metabolismo , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/líquido cefalorraquidiano , Heme Oxigenase-1/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/fisiopatologia , Espaço Intracelular/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Exp Neurol ; 272: 109-19, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25836044

RESUMO

Most of the successes in experimental models of stroke have not translated well to the clinic. One potential reason for this failure is that stroke mainly afflicts the elderly and the majority of experimental stroke studies rely on data gathered from young adult animals. Therefore, in the present study we established a reliable, reproducible model of stroke with low mortality in aged (18month) male mice and contrasted their pathophysiological changes with those in young (2month) animals. To this end, mice were subjected to permanent tandem occlusion of the left distal middle cerebral artery (dMCAO) with ipsilateral common carotid artery occlusion (CCAO). Cerebral blood flow (CBF) was evaluated repeatedly during and after stroke. Reduction of CBF was more dramatic and sustained in aged mice. Aged mice exhibited more severe long-term sensorimotor deficits, as manifested by deterioration of performance in the Rotarod and hanging wire tests up to 35d after stroke. Aged mice also exhibited significantly worse long-term cognitive deficits after stroke, as measured by the Morris water maze test. Consistent with these behavioral observations, brain infarct size and neuronal tissue loss after dMCAO were significantly larger in aged mice at 2d and 14d, respectively. The young versus aged difference in neuronal tissue loss, however, did not persist until 35d after dMCAO. In contrast to the transient difference in neuronal tissue loss, we found significant and long lasting deterioration of white matter in aged animals, as revealed by the loss of myelin basic protein (MBP) staining in the striatum at 35d after dMCAO. We further examined the expression of M1 (CD16/CD32) and M2 (CD206) markers in Iba-1(+) microglia by double immunofluorescent staining. In both young and aged mice, the expression of M2 markers peaked around 7d after stroke whereas the expression of M1 markers peaked around 14d after stroke, suggesting a progressive M2-to-M1 phenotype shift in both groups. However, aged mice exhibited significantly reduced M2 polarization compared to young adults. Remarkably, we discovered a strong positive correlation between favorable neurological outcomes after dMCAO and MBP levels or the number of M2 microglia/macrophages. In conclusion, our studies suggest that the distal MCAO stroke model consistently results in ischemic brain injury with long-term behavioral deficits, and is therefore suitable for the evaluation of long-term stroke outcomes. Furthermore, aged mice exhibit deterioration of functional outcomes after stroke and this deterioration is linked to white matter damage and reductions in M2 microglia/macrophage polarization.


Assuntos
Envelhecimento , Polaridade Celular/fisiologia , Leucoencefalopatias/etiologia , Macrófagos/fisiologia , Microglia/fisiologia , Doenças do Sistema Nervoso/etiologia , Acidente Vascular Cerebral/complicações , Animais , Antígenos CD/metabolismo , Infarto Encefálico/etiologia , Contagem de Células , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Força Muscular , Fatores de Tempo
9.
CNS Neurol Disord Drug Targets ; 12(3): 381-91, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23469855

RESUMO

Ischemic neuroprotection afforded by sevoflurane preconditioning has been previously demonstrated, yet the underlying mechanism is poorly understood and likely affects a wide range of cellular activities. Several individual microRNAs have been implicated in both the pathogenesis of cerebral ischemia and cellular survival, and are capable of affecting a range of target mRNA. Conceivably, sevoflurane preconditioning may lead to alterations in ischemia-induced microRNA expression that may subsequently exert neuroprotective effects. We first examined the microRNA expression profile following transient cerebral ischemia in rats and the impact of sevoflurane preconditioning. Microarray analysis revealed that 3 microRNAs were up-regulated (>2.0 fold) and 9 were down-regulated (< 0.5 fold) following middle cerebral artery occlusion (MCAO) compared to sham controls. In particular, miR-15b was expressed at significantly high levels after MCAO. Preconditioning with sevoflurane significantly attenuated the upregulation of miR-15b at 72h after reperfusion. Bcl-2, an anti-apoptotic gene involved in the pathogenesis of cerebral ischemia, has been identified as a direct target of miR-15b. Consistent with the observed downregulation of miR-15b in sevoflurane-preconditioned brain, postischemic Bcl-2 expression was significantly increased by sevoflurane preconditioning. We identified the 3'-UTR of Bcl-2 as the target for miR-15b. Molecular inhibition of miR-15b was capable of mimicking the neuroprotective effect of sevoflurane preconditioning, suggesting that the suppression of miR-15b due to sevoflurane contributes to its ischemic neuroprotection. Thus, sevoflurane preconditioning may exert its anti-apoptotic effects by reducing the elevated expression of miR-15b following ischemic injury, allowing its target proteins, including Bcl-2, to be translated and expressed at the protein level.


Assuntos
Regulação para Baixo/genética , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/prevenção & controle , Precondicionamento Isquêmico , Éteres Metílicos/farmacologia , MicroRNAs/genética , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Animais , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Infusões Intraventriculares , Ataque Isquêmico Transitório/metabolismo , Masculino , Éteres Metílicos/administração & dosagem , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Sevoflurano , Sulfonas/administração & dosagem , Sulfonas/farmacologia
10.
J Neurochem ; 123 Suppl 2: 125-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23050650

RESUMO

Although alterations in mitochondrial dynamics are associated with cellular responses to injury, the functional role of these dynamic changes in ischemic neurons is underexplored. One of these dynamic responses to injury includes mitochondrial biogenesis. Various sublethal pre-conditioning stimuli that induce an ischemic-tolerant state [e.g., lipopolysaccharide (LPS)] may also induce mitochondrial biogenesis. Using neuron-enriched cultures, we found that sublethal LPS pre-conditioning induced both ischemic tolerance and markers of mitochondrial biogenesis with overlapping dose-response temporal kinetics. Sublethal LPS transiently increased the expression of critical components of the mitochondrial transcriptional machinery, including nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), as well as mtDNA copy number, mitochondrial protein levels, and markers of functional mitochondria, such as increased cellular ATP content, citrate synthase activity, and maximal respiration capacity. Importantly, knockdown of TFAM abrogated both the induction of mitochondrial biogenesis and the neuroprotective pre-conditioning effects of LPS. Several signaling pathways coordinated these events. AMPK inhibition suppressed NRF1 and TFAM expression by LPS, whereas PI3K/Akt signaling was necessary for the nuclear translocation of NRF1 and subsequent induction of TFAM. This is the first demonstration that LPS pre-conditioning initiates multiple signaling pathways leading to mitochondrial biogenesis in neurons and that these dynamic changes contribute to ischemic tolerance.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/administração & dosagem , Renovação Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Contagem de Células , Células Cultivadas , Córtex Cerebral/citologia , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Esquema de Medicação , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Vetores Genéticos/genética , Glucose/deficiência , Glucose/metabolismo , Hipóxia/metabolismo , Hipóxia/prevenção & controle , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/ultraestrutura , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Organelas/efeitos dos fármacos , Organelas/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Proc Natl Acad Sci U S A ; 107(7): 3204-9, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133634

RESUMO

Inducible DNA repair via the base-excision repair pathway is an important prosurvival mechanism activated in response to oxidative DNA damage. Elevated levels of the essential base-excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1)/redox effector factor-1 correlate closely with neuronal survival against ischemic insults, depending on the CNS region, protective treatments, and degree of insult. However, the precise mechanisms by which this multifunctional protein affords protection and is activated by upstream signaling pathways in postischemic neurons are not well delineated. Here we show that intracerebral administration of pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenously occurring small neuropeptide, induces expression of APE1 in hippocampal neurons. Induction of APE1 expression requires PKA- and p38-dependent phosphorylation of cAMP response-element binding and activating transcription factor 2, which leads to transactivation of the APE1 promoter. We further show that PACAP markedly reduces oxidative DNA stress and hippocampal CA1 neuronal death following transient global ischemia. These effects occurred, at least in part, via enhanced APE1 expression. Furthermore, the DNA repair function of APE1 was required for PACAP-mediated neuroprotection. Thus, induction of DNA repair enzymes may be a unique strategy for neuroprotection against hippocampal injury.


Assuntos
Isquemia Encefálica/prevenção & controle , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipocampo/citologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais/fisiologia , Fator 2 Ativador da Transcrição/metabolismo , Análise de Variância , Animais , Apoptose/fisiologia , Imunoprecipitação da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Hipocampo/metabolismo , Humanos , Luciferases , Estresse Oxidativo/fisiologia , Fosforilação , Ratos , Ratos Sprague-Dawley
12.
Front Biosci ; 12: 1737-47, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127418

RESUMO

Mild hypothermia, applied either during or soon after cerebral ischemia, has been shown to confer robust neuroprotection against brain injury in experimental stroke and in patients recovering from cardiac arrest. However, the mechanism underlying hypothermic neuroprotection is not completely understood. In this study, the effect of mild hypothermia on the induction of oxidative DNA damage, an early harmful event during post-ischemic reperfusion that triggers both necrotic and apoptotic cell death in the brain, was studied using the rat model of middle cerebral artery occlusion (MCAO) and reperfusion. Rats were subjected to 2-hr MCAO and reperfusion of various durations up to 3 days. Selective brain hypothermia (33 degrees C) was induced at the onset of ischemia and terminated at the beginning of reperfusion, and this significantly decreased infarct volume 72 hr later. Correlated with this protective effect, intraischemic mild hypothermia markedly attenuated the nuclear accumulations of several oxidative DNA lesions, including 8-oxodG, AP sites, and DNA single-strand breaks, after 2-hr MCAO. Consequently, harmful DNA damage-dependent signaling events, including NAD depletion, p53 activation, and mitochondrial translocation of PUMA and NOXA, were reduced during post-ischemic reperfusion in hypothermia-treated brains. These results suggest that the attenuation of oxidative DNA damage and DNA damage-triggered pro-death signaling events may be an important mechanism underlying the neuroprotective effect of mild hypothermia against ischemic brain injury.


Assuntos
Isquemia Encefálica/terapia , Dano ao DNA , Hipotermia Induzida , Animais , Apoptose , Infarto Encefálico/patologia , Infarto Encefálico/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Quebras de DNA de Cadeia Simples , Masculino , NAD/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Supressora de Tumor p53/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA