Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 9(8): e103744, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089899

RESUMO

Insulin-like growth factor 2 (IGF2) overexpression is an important molecular marker of adrenocortical carcinoma (ACC), which is a rare but devastating endocrine cancer. It is not clear whether IGF2 overexpression modifies the biology and growth of this cancer, thus more studies are required before IGF2 can be considered as a major therapeutic target. We compared the phenotypical, clinical, biological, and molecular characteristics of ACC with or without the overexpression of IGF2, to address these issues. We also carried out a similar analysis in an ACC cell line (H295R) in which IGF2 expression was knocked down with si- or shRNA. We found no significant differences in the clinical, biological and molecular (transcriptomic) traits between IGF2-high and IGF2-low ACC. The absence of IGF2 overexpression had little influence on the activation of tyrosine kinase pathways both in tumors and in H295 cells that express low levels of IGF2. In IGF2-low tumors, other growth factors (FGF9, PDGFA) are more expressed than in IGF2-high tumors, suggesting that they play a compensatory role in tumor progression. In addition, IGF2 knock-down in H295R cells substantially impaired growth (>50% inhibition), blocked cells in G1 phase, and promoted apoptosis (>2-fold). Finally, analysis of the 11p15 locus showed a paternal uniparental disomy in both IGF2-high and IGF2-low tumors, but low IGF2 expression could be explained in most IGF2-low ACC by an additional epigenetic modification at the 11p15 locus. Altogether, these observations confirm the active role of IGF2 in adrenocortical tumor growth, but also suggest that other growth promoting pathways may be involved in a subset of ACC with low IGF2 expression, which creates opportunities for the use of other targeted therapies.


Assuntos
Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Fator de Crescimento Insulin-Like II/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 11/genética , Metilação de DNA/genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Loci Gênicos , Impressão Genômica , Humanos , Fator de Crescimento Insulin-Like II/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Adulto Jovem
2.
Hum Mutat ; 32(2): 249-58, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280150

RESUMO

Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Metilação de DNA , Impressão Genômica , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Síndrome de Silver-Russell/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Cromossomos Humanos Par 11 , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Síndrome de Silver-Russell/genética
3.
Hum Mol Genet ; 18(24): 4724-33, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19755383

RESUMO

Genomic imprinting plays an important role in mammalian development. Loss of imprinting (LOI) through loss (LOM) or gain (GOM) of methylation is involved in many human disorders and cancers. The imprinted 11p15 region is crucial for the control of foetal growth and LOI at this locus is implicated in two clinically opposite disorders: Beckwith Wiedemann syndrome (BWS) with foetal overgrowth associated with an enhanced tumour risk and Russell-Silver syndrome (RSS) with intrauterine and postnatal growth restriction. So far, only a few studies have assessed multilocus LOM in human imprinting diseases. To investigate multilocus LOI syndrome, we studied the methylation status of five maternally and two paternally methylated loci in a large series (n = 167) of patients with 11p15-related foetal growth disorders. We found that 9.5% of RSS and 24% of BWS patients showed multilocus LOM at regions other than ICR1 and ICR2 11p15, respectively. Moreover, over two third of multilocus LOM RSS patients also had LOM at a second paternally methylated locus, DLK1/GTL2 IG-DMR. No additional clinical features due to LOM of other loci were found suggesting an (epi)dominant effect of the 11p15 LOM on the clinical phenotype for this series of patients. Surprisingly, four patients displayed LOM at both ICR1 and ICR2 11p15. Three of them had a RSS and one a BWS phenotype. Our results show for the first time that multilocus LOM can also concern RSS patients. Moreover, LOM can involve both paternally and maternally methylated loci in the same patient.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Cromossomos Humanos Par 11/genética , Retardo do Crescimento Fetal/genética , Impressão Genômica , Síndrome de Silver-Russell/genética , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Metilação de DNA , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/genética , Proteínas/genética , RNA Longo não Codificante , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA