Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(5): 2218-2230, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38193719

RESUMO

Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01-27.1 and 2.61-47.9 µM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1-3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.


Assuntos
Complexos de Coordenação , Prata , Humanos , Prata/farmacologia , Prata/química , Candida , Antifúngicos/farmacologia , Antifúngicos/química , Azóis/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Íons/farmacologia , Nitrogênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
2.
Dalton Trans ; 52(14): 4276-4289, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961520

RESUMO

Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium, involved in severe infections associated with cystic fibrosis, pneumonia, burn wounds, ocular diseases, and immunosuppressive illnesses, and is a major cause of intrahospital infections. This bacterium is also one of the most commercially and biotechnologically significant microorganisms, since it can produce valuable biomolecules which represent a rich source of potential drug candidates. On the other hand, metal complexes have been used in medicine for both therapeutic and diagnostic purposes since ancient times. This class of compounds can adopt different geometries and generally have a three-dimensional shape, contributing to their higher clinical success compared to flat purely organic compounds. In the present review article, attention has been devoted to the three natural products derived from P. aeruginosa, namely pyocyanin, pyochelin, and pyoverdine(s) and their ability to form complexes with different metal ions, including iron(II/III), manganese(II/III), gallium(III), chromium(III), nickel(II), copper(II), zinc(II) and cadmium(II). Investigation of the coordination properties of pyocyanin, pyochelin, and pyoverdine(s) towards these metal ions is important because the resulting bacterially derived natural product-metal complex can serve as a model for the study of metal ion metabolism (transport and storage) in living systems and might also be considered as a novel therapeutic agent for potential use in medicine.


Assuntos
Complexos de Coordenação , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Complexos de Coordenação/metabolismo , Piocianina/metabolismo
3.
J Inorg Biochem ; 208: 111089, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32442762

RESUMO

Three novel Zn(II) complexes, [ZnCl2(qz)2] (1), [ZnCl2(1,5-naph)]n (2) and [ZnCl2(4,7-phen)2] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Candida parapsilosis/crescimento & desenvolvimento , Complexos de Coordenação , Compostos Heterocíclicos , Nistatina , Zinco , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/agonistas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Sinergismo Farmacológico , Compostos Heterocíclicos/agonistas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Nistatina/agonistas , Nistatina/química , Nistatina/farmacologia , Zinco/agonistas , Zinco/química , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA