Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39001407

RESUMO

GBM WHO CNS Grade 4 represents a major challenge for oncology due to its aggressive behavior. Conventional imaging has restrictions in detecting tumor recurrence. This prospective study aims to identify gene-based biomarkers in whole blood instead of isolating exosomes for the early detection of tumor recurrence. Blood samples (n = 33) were collected from seven GBM patients at time points before and after surgery as well as upon tumor recurrence. Four tumor tissue samples were assessed in parallel. Next-generation sequencing (NGS), including mRNA-seq and small RNA-seq, was used to analyze gene expression profiles in blood samples and tumor tissues. A novel filtering pipeline was invented to narrow down potential candidate genes. In total, between 6-93 mRNA and 1-19 small RNA candidates could be identified among the seven patients. The overlap of genes between the patients was minimal, indicating significant inter-individual variance among GBM patients. In summary, this prospective study supports the applicability of gene expression measurements in whole blood for the detection of tumor recurrence. It might provide an alternative to the challenging workflow of liquid biopsy after laborious exosome isolation from whole blood.

2.
Radiat Res ; 201(5): 396-405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38282002

RESUMO

After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes. Here, we investigated the effect of iodinated contrast agents on radiation-induced gene expression (GE) changes used for biodosimetry (AEN, BAX, CDKN1A, EDA2R, APOBEC3H) and for hematologic ARS severity prediction (FDXR, DDB2, WNT3, POU2AF1), and on the induction of double-strand breaks (DSBs) used for biodosimetry. Whole blood samples from 10 healthy donors (5 males, 5 females, mean age: 28 ± 2 years) were irradiated with X rays (0, 1 and 4 Gy) with and without the addition of iodinated contrast agent (0.016 ml contrast agent/ml blood) to the blood prior to the exposure. The amount of contrast agent was set to be equivalent to the blood concentration of an average patient (80 kg) during a contrast-enhanced CT scan. After irradiation, blood samples were incubated at 37°C for 20 min (DSB) and 8 h (GE, DSB). GE was measured employing quantitative real-time polymerase chain reaction. DSB foci were revealed by γH2AX + 53BP1 immunostaining and quantified automatically in >927 cells/sample. Radiation-induced differential gene expression (DGE) and DSB foci were calculated using the respective unexposed sample without supplementation of contrast agent as the reference. Neither the GE nor the number of DSB foci was significantly (P = 0.07-0.94) altered by the contrast agent application. However, for some GE and DSB comparisons with/without contrast agent, there were weakly significant differences (P = 0.03-0.04) without an inherent logic and thus are likely due to inter-individual variation. In nuclear events, the diagnostics of combined injuries can require the use of an iodinated contrast agent, which, according to our results, does not alter or influence radiation-induced GE changes and the quantity of DSB foci. Therefore, the gene expression and γH2AX focus assay can still be applied for biodosimetry and/or hematologic ARS severity prediction in such scenarios.


Assuntos
Meios de Contraste , Quebras de DNA de Cadeia Dupla , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Adulto , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Int J Radiat Biol ; 100(4): 527-540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227483

RESUMO

PURPOSE: In a previous baboon-study, a total of 29 genes were identified for clinical outcome prediction of the hematologic, acute, radiation, syndrome (H-ARS) severity. Among them, four genes (FDXR, DDB2, POU2AF1, WNT3) appeared promising and were validated in five leukemia patients. Within this study, we sought further in-vivo validation in a larger number of whole-body irradiated patients. MATERIAL AND METHODS: Peripheral blood was drawn from 10 leukemia patients before and up to 3 days during a fractionated (2 Gy/day) total-body irradiation (TBI) with 2-12Gy. After RNA-isolation, gene expression (GE) was evaluated on 31 genes widely used in biodosimetry and H-ARS prediction employing qRT-PCR. A customized low-density-array (LDA) allowed simultanously analyzing all genes, the 96-well format further examined the four most promising genes. Fold-changes (FC) in GE relative to pre-irradiation were calculated. RESULTS: Five patients suffering from acute-lymphoblastic-leukemia (ALL) respectively non-Hodgkin-lymphoma (NHL) revealed sufficient RNA-amounts and corresponding lymphocyte and neutrophile counts for running qRT-PCR, while acute-myeloid-leukemia (AML) and one myelofibrosis patient could not supply enough RNA. Generally, 1-2µg total RNA was isolated, whereas up to 10-fold differences in RNA-quantities (associated suppressed GE-changes) were identified among pre-exposure and exposure samples. From 31 genes, 23 were expressed in at least one of the pre-exposure samples. Relative to pre-exposure, the number of expressed genes could halve at 48 and 72h after irradiation. Using the LDA, 13 genes were validated in human samples. The four most promising genes (vid. sup.) were either undetermined or too close to pre-exposure. However, they were measured using the more sensitive 96-well format, except WNT3, which wasn´t detectable. As in previous studies, an opposite regulation in GE for FDXR in leukemia patients (up-regulated) relative to baboons (down-regulated) was reconfirmed. Radiation-induced GE-changes of DDB2 (up-regulated) and POU2AF1 (down-regulated) behaved similarly in both species. Hence, 16 out of 23 genes of two species showed GE-changes in the same direction, and up-regulated FDXR as in human studies were revalidated. CONCLUSION: Identified genes for H-ARS severity prediction, previously detected in baboons, were validated in ALL but not in AML patients. Limitations related to leukemia type, associated reduced RNA amounts, suppressed GE changes, and methodological challenges must be considered as factors negatively affecting the total number of validated genes. Based on that, we propose additional controls including blood cell counts and preferably fluorescence-based RNA quantity measurements for selecting promising samples and using a more sensitive 96-well format for candidate genes with low baseline copy numbers.


Assuntos
Leucemia Mieloide Aguda , RNA , Humanos , Animais , Irradiação Corporal Total , Contagem de Células Sanguíneas , Papio/genética , Leucemia Mieloide Aguda/genética
5.
Int J Radiat Biol ; 99(10): 1584-1594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988552

RESUMO

OBJECTIVE: Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes. MATERIALS AND METHODS: Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints. RESULTS: A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd. CONCLUSION: Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.


Assuntos
Bioensaio , Exposição à Radiação , Animais , Humanos , Relação Dose-Resposta à Radiação , Bioensaio/métodos , Exposição à Radiação/efeitos adversos , Expressão Gênica
6.
Nat Commun ; 14(1): 392, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693842

RESUMO

Cancer immunotherapy that deploys the host's immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically "cold" into "hot". In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes "frostbite" of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.


Assuntos
Antineoplásicos , Crioterapia , Imunoterapia , Neoplasias , Microambiente Tumoral , Animais , Feminino , Camundongos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia/métodos , Nanotecnologia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Crioterapia/métodos
7.
Cytotherapy ; 25(5): 502-509, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36513574

RESUMO

BACKGROUND AIMS: As evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported. METHODS: The authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, -20°C, -80°C) for various durations as well as after lyophilization. RESULTS: Mesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4-6 weeks at -20°C and -80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs. CONCLUSIONS: These findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Cicatrização
8.
Radiat Res ; 199(2): 115-123, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480042

RESUMO

Radiological and especially nuclear accidents and incidents pose a threat to populations. In such events, gene expression (GE) analysis of a set of 4 genes (FDXR, DDB2, POU2AF1, WNT3) is an emerging approach for early and high-throughput prediction of the later manifesting severity degrees of the hematological acute radiation syndrome (H-ARS). Validation of this gene set on radiation victims is difficult since these events are rare. However, chemotherapy (CTX) is widely used e.g., breast cancer patient treatment and pathomechanisms, as well as blood cell count changes are comparable among both exposure types. We wondered whether GE changes are similarly deregulated after CTX, which would be interpreted as a confirmation of our already identified gene set for H-ARS prediction after irradiation. We examined radiation-induced differential GE (DGE) of our gene set as a positive control using in vitro whole blood samples from ten healthy donors (6 females, 4 males, aged: 24-40 years). Blood was incubated in vitro for 8 h after X irradiation with 0 and 4 Gy (1 Gy/min). These data were compared with DGE measured in vivo in blood samples of 10 breast tumor CTX patients (10 females, aged: 39-71 years) before and 4 days after administration of cyclophosphamide and epirubicin. RNA was isolated, reverse transcribed and quantitative real-time polymerase-chain-reaction (qRT-PCR) was performed to assess DGE of FDXR, DDB2, POU2AF1 and WNT3 relative to the unexposed samples using TaqMan assays. After X irradiation, we found a significant upregulation (irrespective of sex) with mean fold changes of 21 (P < 0.001) and 7 (P < 0.001) for FDXR and DDB2 and a significant down-regulation with mean fold changes of 2.5 (P < 0.001) and 2 (P = 0.005) for POU2AF1 and WNT3, respectively. After CTX, a similar pattern was observed, although mean fold changes of up-regulated FDXR (6-fold, P < 0.001) and DDB2 (3-fold, P < 0.001) as well as down-regulated POU2AF1 (1.2-fold, P = 0.270) and WNT3 (1.3-fold, P = 0.069) appeared lower corresponding to less altered blood cell count changes observed after CTX compared to historic radiation exposure data. However, a subpopulation of CTX patients (n = 6) showed on average a significant downregulation of POU2AF1 (1.8-fold, P = 0.04) and WNT3 (2.1-fold, P = 0.008). In summary, the pattern of up-regulated GE changes observed in all CTX patients and down-regulated GE changes observed in a subgroup of CTX patients appeared comparable with an already identified gene set predictive for the radiation-induced H-ARS. This underlines the significance of in vivo GE measurements in CTX patients, employed as a surrogate model to further validate already identified radiation-induced GE changes predictive for the H-ARS.


Assuntos
Síndrome Aguda da Radiação , Exposição à Radiação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Síndrome Aguda da Radiação/genética , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Radiografia , RNA
9.
ACS Nano ; 16(7): 11374-11391, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797466

RESUMO

The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up in vitro, which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogeneous (EpCAM+ and CD44+) CTCs with high purity but also glutathione-controlled gentle release of the CTCs with high efficiency and viability. This is enabled by coating the polydimethylsiloxane (PDMS) surface in the device with a 10 nm gold layer through a 4 nm titanium coupling layer, for convenient PEGylation and linkage of capture antibodies via the thiol-gold chemistry. Surprisingly, the percentage of EpCAM+ mammary CTCs can be as low as ∼35% (∼70% on average), showing that the commonly used approach of capturing CTCs with EpCAM alone may miss many EpCAM- CTCs. Furthermore, the CD44+ CTCs can be cultured to form 3D spheroids efficiently for scale-up. In contrast, the CTCs captured with EpCAM alone are poor in proliferation in vitro, consistent with the literature. By capture of the CTC heterogeneity, the percentage of stage IV patients whose CTCs can be successfully cultured/scaled up is improved from 12.5% to 68.8%. These findings demonstrate that the common practice of CTC capture with EpCAM alone misses the CTC heterogeneity including the critical CD44+ CTCs. This study may be valuable to the procurement and scale-up of heterogeneous CTCs, to facilitate the understanding of cancer metastasis and the development of cancer metastasis-targeted personalized cancer therapies conveniently via the minimally invasive liquid/blood biopsy.


Assuntos
Células Neoplásicas Circulantes , Titânio , Humanos , Molécula de Adesão da Célula Epitelial , Ouro , Linhagem Celular Tumoral , Células Neoplásicas Circulantes/patologia , Dimetilpolisiloxanos , Glutationa , Polietilenoglicóis
10.
Nano Today ; 432022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251293

RESUMO

Colon and rectal cancers are the leading causes of cancer-related deaths in the United States and effective targeted therapies are in need for treating them. Our genomic analyses show hemizygous deletion of TP53, an important tumor suppressor gene, is highly frequent in both cancers, and the 5-year survival of patients with the more prevalent colon cancer is significantly reduced in the patients with the cancer harboring such deletion, although such reduction is not observed for rectal cancer. Unfortunately, direct targeting TP53 has been unsuccessful for cancer therapy. Interestingly, POLR2A, a gene essential for cell survival and proliferation, is almost always deleted together with TP53 in colon and rectal cancers. Therefore, RNA interference (RNAi) with small interfering RNAs (siRNAs) to precisely target/inhibit POLR2A may be an effective strategy for selectively killing cancer cells with TP53 deficiency. However, the difficulty of delivering siRNAs specifically into the cytosol where they perform their function, is a major barrier for siRNA-based therapies. Here, metformin bicarbonate (MetC) is synthesized to develop pH-responsive MetC-nanoparticles with a unique "bomb" for effective cytosolic delivery of POLR2A siRNA, which greatly facilitates its endo/lysosomal escape into the cytosol and augments its therapeutic efficacy of cancer harboring TP53 deficiency. Moreover, the MetC-based nanoparticles without functional siRNA show notable therapeutic effect with no evident toxicity or immunogenicity.

11.
J Heat Transfer ; 144(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35125512

RESUMO

Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.

12.
Nat Commun ; 12(1): 312, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436622

RESUMO

The transmembrane P-glycoprotein (P-gp) pumps that efflux drugs are a major mechanism of cancer drug resistance. They are also important in protecting normal tissue cells from poisonous xenobiotics and endogenous metabolites. Here, we report a fucoidan-decorated silica-carbon nano-onion (FSCNO) hybrid nanoparticle that targets tumor vasculature to specifically release P-gp inhibitor and anticancer drug into tumor cells. The tumor vasculature targeting capability of the nanoparticle is demonstrated using multiple models. Moreover, we reveal the superior light absorption property of nano-onion in the near infrared region (NIR), which enables triggered drug release from the nanoparticle at a low NIR power. The released inhibitor selectively binds to P-gp pumps and disables their function, which improves the bioavailability of anticancer drug inside the cells. Furthermore, free P-gp inhibitor significantly increases the systemic toxicity of a chemotherapy drug, which can be resolved by delivering them with FSCNO nanoparticles in combination with a short low-power NIR laser irradiation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Carbono/química , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Selectina-P/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Microfluídica , Nanopartículas/ultraestrutura , Neoplasias/irrigação sanguínea , Terapia Fototérmica , Polissacarídeos/química , Dióxido de Silício/química
13.
ACS Biomater Sci Eng ; 6(5): 2543-2562, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33299929

RESUMO

Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/cirurgia , Humanos , Insulina , Suínos
14.
J Healthc Manag ; 65(6): 397-405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33186253

RESUMO

EXECUTIVE SUMMARY: With increased therapeutic capabilities in healthcare today, many patients with multiple progressive comorbidities are living longer. They experience recurrent hospitalizations and often undergo procedures that are not aligned with their personal goals. That is why it is essential to discuss and document healthcare preferences prior to an acute event when significant interventions could occur, especially for patients with serious and progressive illness. Completion of an advance directive and a physician order for life-sustaining treatment (POLST) supports provision of goal-concordant care. Further, for patients who have do not attempt resuscitation (DNAR) orders or are diagnosed with advanced dementia, having a POLST is essential. This may be best accomplished with hospitalization discharge plans. Our 896-bed academic medical center, Cedars-Sinai Medical Center, launched a quality initiative in 2015 to complete POLSTs for patients being discharged with DNAR status or with dementia returning to a skilled nursing facility. As part of interdisciplinary progression of care rounds, emphasis was placed on those patients for whom POLST completion was indicated. Proactive, facilitated discussions with patients, family members, and attending physicians were initiated to support POLST completion. The completed forms were then uploaded to the electronic health record. Individual units and physicians received regular feedback on POLST completion rates, and the data were later shared at medical staff quality improvement meetings.During the initiative, POLST completion rates for DNAR patients discharged alive rose from 41% in fiscal year (FY) 2014 to 75% in FY 2019. Similar improvement was seen for patients with dementia discharged to skilled nursing facilities, regardless of code status (rising from 14% in FY 2014 to 54% in FY 2019). Subsequently, we have expanded our efforts to include early discussion and completion of these advanced care planning documents for patients recently diagnosed with high mortality cancers (ovarian, pancreatic, lung, glioblastoma), focusing on the completion of advanced care planning documentation and palliative care referrals.


Assuntos
Planejamento Antecipado de Cuidados , Médicos , Diretivas Antecipadas , Hospitais , Humanos , Ordens quanto à Conduta (Ética Médica)
15.
Adv Sci (Weinh) ; 7(11): 2000259, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537420

RESUMO

Cancer stem cells (CSCs) are rare cancer cells that are postulated to be responsible for cancer relapse and metastasis. However, CSCs are difficult to isolate and poorly understood. Here, a bioinspired approach for label-free isolation and culture of CSCs, by microencapsulating one cancer cell in the nanoliter-scale hydrogel core of each prehatching embryo-like core-shell microcapsule, is reported. Only a small percentage of the individually microencapsulated cancer cells can proliferate into a cell colony. Gene and protein expression analyses indicate high stemness of the cells in the colonies. Importantly, the colony cells are capable of cross-tissue multilineage (e.g., endothelial, cardiac, neural, and osteogenic) differentiation, which is not observed for "CSCs" isolated using other contemporary approaches. Further studies demonstrate the colony cells are highly tumorigenic, metastatic, and drug resistant. These data show the colony cells obtained with the bioinspired one-cell-culture approach are truly CSCs. Significantly, multiple pathways are identified to upregulate in the CSCs and enrichment of genes related to the pathways is correlated with significantly decreased survival of breast cancer patients. Collectively, this study may provide a valuable method for isolating and culturing CSCs, to facilitate the understanding of cancer biology and etiology and the development of effective CSC-targeted cancer therapies.

16.
Nat Biotechnol ; 38(6): 715-721, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32231335

RESUMO

Mining the antibody repertoire of plasma cells and plasmablasts could enable the discovery of useful antibodies for therapeutic or research purposes1. We present a method for high-throughput, single-cell screening of IgG-secreting primary cells to characterize antibody binding to soluble and membrane-bound antigens. CelliGO is a droplet microfluidics system that combines high-throughput screening for IgG activity, using fluorescence-based in-droplet single-cell bioassays2, with sequencing of paired antibody V genes, using in-droplet single-cell barcoded reverse transcription. We analyzed IgG repertoire diversity, clonal expansion and somatic hypermutation in cells from mice immunized with a vaccine target, a multifunctional enzyme or a membrane-bound cancer target. Immunization with these antigens yielded 100-1,000 IgG sequences per mouse. We generated 77 recombinant antibodies from the identified sequences and found that 93% recognized the soluble antigen and 14% the membrane antigen. The platform also allowed recovery of ~450-900 IgG sequences from ~2,200 IgG-secreting activated human memory B cells, activated ex vivo, demonstrating its versatility.


Assuntos
Anticorpos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Vacinas Anticâncer/imunologia , DNA/análise , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imunoglobulina G/genética , Camundongos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos
17.
Nat Nanotechnol ; 15(4): 342, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31953520

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Nano Lett ; 19(12): 9051-9061, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31680526

RESUMO

Conventional cryopreservation of mammalian cells requires the use of toxic organic solvents (e.g., dimethyl sulfoxide) as cryoprotectants. Consequently, the cryopreserved cells must undergo a tedious washing procedure to remove the organic solvents for their further applications in cell-based medicine, and many of the precious cells may be lost or killed during the procedure. Trehalose has been explored as a nontoxic alternative to traditional cryoprotectants. However, mammalian cells do not synthesize trehalose or express trehalose transporters in their membranes, and the lack of an approach for the efficient intracellular delivery of trehalose has been a major hurdle for its use in cell cryopreservation. In this study, a cold-responsive polymer (poly(N-isopropylacrylamide-co-butyl acrylate)) is utilized to synthesize nanoparticles for the encapsulation and intracellular delivery of trehalose. The trehalose-laden nanoparticles can be efficiently taken up by mammalian cells. The nanoparticles quickly and irreversibly disassemble upon cold treatment, enabling the controlled and rapid release of trehalose from the nanoparticles inside cells. The latter is confirmed by an evident increase in cell volume upon cold treatment. This rapid cold-triggered intracellular release of trehalose is crucial to developing a fast protocol to cryopreserve cells using trehalose. Cells with intracellular trehalose delivered using the nanoparticles show comparable postcryopreservation viability compared to that of cells treated with DMSO, eliminating the need for the tedious and cell-damaging washing procedure required for using the DMSO-cryopreserved cells in vivo. This cold-responsive nanoparticle may greatly facilitate the use of trehalose as a nontoxic cryoprotectant for banking cells and tissues to meet their high demand by modern cell-based medicine.


Assuntos
Temperatura Baixa , Criopreservação , Portadores de Fármacos , Nanopartículas/química , Trealose , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Trealose/química , Trealose/farmacocinética , Trealose/farmacologia
19.
Nat Nanotechnol ; 14(5): 496, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30837690

RESUMO

The Supplementary Information originally published with this Article was an older version, in which 'IFN-γ' was misspelled 'INF-γ' in Supplementary Fig. 9 and the ß-Actin blot in Supplementary Fig. 13 was the wrong image. The Supplementary Information has now been replaced.

20.
Nat Nanotechnol ; 14(4): 388-397, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804480

RESUMO

TP53 is the most frequently mutated or deleted gene in triple negative breast cancer (TNBC). Both the loss of TP53 and the lack of targeted therapy are significantly correlated with poor clinical outcomes, making TNBC the only type of breast cancer that has no approved targeted therapies. Through in silico analysis, we identified POLR2A in the TP53-neighbouring region as a collateral vulnerability target in TNBC tumours, suggesting that its inhibition via small interfering RNA (siRNA) may be an amenable approach for TNBC targeted treatment. To enhance bioavailability and improve endo/lysosomal escape of siRNA, we designed pH-activated nanoparticles for augmented cytosolic delivery of POLR2A siRNA (siPol2). Suppression of POLR2A expression with the siPol2-laden nanoparticles leads to enhanced growth reduction of tumours characterized by hemizygous POLR2A loss. These results demonstrate the potential of the pH-responsive nanoparticle and the precise POLR2A targeted therapy in TNBC harbouring the common TP53 genomic alteration.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Endossomos/metabolismo , Feminino , Deleção de Genes , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA