Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 19(6): 1311-1320, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35816226

RESUMO

BACKGROUND: Tissue defects in the annulus fibrosus (AF) due to intervertebral disc (IVD) degeneration or after nucleodiscectomy have little self-healing capacity. To prevent progressive degeneration of the IVD, the AF must be repaired. Biological closure has not yet been achieved and is a challenge for the research community. In this study, a scaffold made of absorbable poly (glycolic acid) (PGA) and hyaluronan (HA) that exhibit excellent biocompatibility and cell colonization properties was used to repair AF defects in an ovine model. METHODS: A partial resection was performed in AF in L3/4 or L4/5 of 10 sheep and PGA-HA scaffolds were implanted on the defects (n = 5), while defects in the control group were left untreated (n = 5). Three months post-operation, the lumbar discs were sectioned and stained with hematoxylin and eosin and safranin-O/fast-green. Histological features including proteoglycan content, annular structure, cellular morphology, blood vessel ingrowth and tear/cleft formation were scored using a modified scoring scheme by 3 investigators and evaluated by a pathologist independently. RESULTS: The treated AF exhibited significantly enhanced repair tissue structure with signs of proteoglycan formation compared to the untreated group. The median scores were 4.3 for the treated and 9.8 for the untreated group. Cystic degeneration, perivascular infiltration, inflammation and necrosis were only present in the untreated group. Blood vessel ingrowth and tear/cleft formation were increased, though not significant, in the untreated group while cell morphology was comparable in both groups. CONCLUSION: PGA-HA scaffolds used for AF closure support repair tissue formation in an ovine lumbar disc defect model.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Anel Fibroso/patologia , Ácido Hialurônico , Disco Intervertebral/patologia , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/cirurgia , Proteoglicanas , Ovinos
2.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466904

RESUMO

Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.


Assuntos
Células da Medula Óssea/metabolismo , Transplante Ósseo/métodos , Osso e Ossos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Biossíntese de Proteínas , Engenharia Tecidual/métodos , Adulto , Bioimpressão/métodos , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Diferenciação Celular/genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Impressão Tridimensional , Alicerces Teciduais , Transplante Autólogo
3.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245213

RESUMO

Intervertebral disc (IVD) herniation and degeneration is a major source of back pain. In order to regenerate a herniated and degenerated disc, closure of the anulus fibrosus (AF) is of crucial importance. For molecular characterization of AF, genome-wide Affymetrix HG-U133plus2.0 microarrays of native AF and cultured cells were investigated. To evaluate if cells derived from degenerated AF are able to initiate gene expression of a regenerative pattern of extracellular matrix (ECM) molecules, cultivated cells were stimulated with bone morphogenetic protein 2 (BMP2), transforming growth factor ß1 (TGFß1) or tumor necrosis factor-α (TNFα) for 24 h. Comparative microarray analysis of native AF tissues showed 788 genes with a significantly different gene expression with 213 genes more highly expressed in mild and 575 genes in severe degenerated AF tissue. Mild degenerated native AF tissues showed a higher gene expression of common cartilage ECM genes, whereas severe degenerated AF tissues expressed genes known from degenerative processes, including matrix metalloproteinases (MMP) and bone associated genes. During monolayer cultivation, only 164 differentially expressed genes were found. The cells dedifferentiated and altered their gene expression profile. RTD-PCR analyses of BMP2- and TGFß1-stimulated cells from mild and severe degenerated AF tissue after 24 h showed an increased expression of cartilage associated genes. TNFα stimulation increased MMP1, 3, and 13 expression. Cells derived from mild and severe degenerated tissues could be stimulated to a comparable extent. These results give hope that regeneration of mildly but also strongly degenerated disc tissue is possible.


Assuntos
Anel Fibroso/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/genética , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Anel Fibroso/patologia , Proteína Morfogenética Óssea 2/farmacologia , Células Cultivadas , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/patologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regeneração/efeitos dos fármacos , Regeneração/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
4.
Cartilage ; 11(2): 192-202, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-29577749

RESUMO

OBJECTIVE: The objective was to evaluate the proliferating, migratory and extracellular matrix (ECM) forming potential of annulus fibrosus cells derived from early (edAFC) or advanced (adAFC) degenerative tissue and their usability as a possible cell source for regenerative approaches for AF closure. DESIGN: EdAFC (n = 5 Pfirrman score of 2-3) and adAFC (n = 5 Pfirrman score of 4-5) were isolated from tissue of patients undergoing spine stabilizing surgery. Cell migration on stimulation with human serum (HS), platelet-rich plasma (PRP), and transforming growth factor ß-3 (TGFB3) was assessed by migration assay and proliferation was assessed on stimulation with HS. Induction of ECM synthesis was evaluated by gene expression analysis of AF-related genes in three-dimensional scaffold cultures that have been stimulated with 5% PRP or 10 ng/mL TGFB3 and histologically by collagen type I, type II, alcian blue, and safranin-O staining. RESULTS: EdAFC and adAFC were significantly attracted by 10% HS and 5% PRP. Additionally, both cell groups proliferated under stimulation with HS. Stimulation with 10 ng/mL TGFB3 showed significant induction of gene expression of collagen type II and aggrecan, while 5% PRP decreased the expression of collagen type I. Both cell groups showed formation of AF-like ECM after stimulation with TGFB3, whereas stimulation with PRP did not. CONCLUSIONS: Our study demonstrated that AF cells retain their potential for proliferation, migration, and ECM formation independent of the degeneration status of the tissue. Proliferation, migration, and ECM synthesis of the endogenous AF cells can be supported by different supplements. Hence, endogenous AF cells might be a suitable cell source for a regenerative repair approaches.


Assuntos
Anel Fibroso/citologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/patologia , Células Cultivadas , Humanos , Disco Intervertebral/patologia , Plasma Rico em Plaquetas/metabolismo , Regeneração/fisiologia , Soro/metabolismo , Fator de Crescimento Transformador beta3/administração & dosagem
5.
PLoS One ; 12(5): e0178560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562645

RESUMO

For clinical applications of cells and tissue engineering products it is of importance to characterize the quality of the used cells in detail. Progenitor cells from the periosteum are already routinely applied in the clinics for the regeneration of the maxillary bone. Periosteal cells have, in addition to their potential to differentiate into bone, the ability to develop into cartilage and fat. However, the question arises whether all cells isolated from periosteal biopsies are able to differentiate into all three tissue types, or whether there are subpopulations. For an efficient and approved application in bone or cartilage regeneration the clarification of this question is of interest. Therefore, 83 different clonal cultures of freshly isolated human periosteal cells derived from mastoid periosteum biopsies of 4 donors were generated and growth rates calculated. Differentiation capacities of 51 clonal cultures towards the osteogenic, the chondrogenic, and the adipogenic lineage were investigated. Histological and immunochemical stainings showed that 100% of the clonal cultures differentiated towards the osteogenic lineage, while 94.1% demonstrated chondrogenesis, and 52.9% could be stimulated to adipogenesis. For osteogenesis real-time polymerase chain reaction (PCR) of BGLAP and RUNX2 and for adipogenesis of FABP4 and PPARG confirmed the results. Overall, 49% of the cells exhibited a tripotent potential, 45.1% showed a bipotent potential (without adipogenic differentiation), 3.9% bipotent (without chondrogenic differentiation), and 2% possessed a unipotent osteogenic potential. In FACS analyses, no differences in the marker profile of undifferentiated clonal cultures with bi- and tripotent differentiation capacity were found. Genome-wide microarray analysis revealed 52 differentially expressed genes for clonal subpopulations with or without chondrogenic differentiation capacity, among them DCN, NEDD9, TGFBR3, and TSLP. For clinical applications of periosteal cells in bone regeneration all cells were inducible. For a chondrogenic application a fraction of 6% of the mixed population could not be induced.


Assuntos
Osso e Ossos/citologia , Análise de Célula Única , Células-Tronco/citologia , Biópsia , Diferenciação Celular , Humanos , Reação em Cadeia da Polimerase em Tempo Real
6.
PLoS One ; 8(7): e69754, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922792

RESUMO

BACKGROUND: During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated. RESULTS: Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2-3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1-3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes. CONCLUSION: The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and monitoring of clinical translation for soft-tissue regeneration. Moreover, we report 4 new marker genes.


Assuntos
Adipogenia/genética , Adiposidade/genética , Biomarcadores/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Genoma Humano/genética , Idoso , Sítios de Ligação , Desdiferenciação Celular/genética , Separação Celular , Análise por Conglomerados , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
7.
Differentiation ; 85(3): 78-90, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23644554

RESUMO

It is generally accepted that after differentiation bone marrow mesenchymal stem cells (MSC) become lineage restricted and unipotent in an irreversible manner. However, current results imply that even terminally differentiated cells transdifferentiate across lineage boundaries and therefore act as a progenitor cells for other lineages. This leads to the questions that whether transdifferentiation occurs via direct cell-to-cell conversion or dedifferentiation to a progenitor cells and subsequent differentiation, and whether MSC potency decreases or increases during differentiation. To address these questions, MSC were differentiated into adipogenic lineage cells, followed by dedifferentiation. The process of dedifferentiation was also confirmed by single cell clonal analysis. Finally the dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated MSC, adipogenic-differentiated and dedifferentiated cells were performed. Interestingly, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes have an association with cell cycle arrest in adipogenic-differentiated cells and perhaps narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these genes have an association with cell cycle progression and maybe motivate dedifferentiation of adipogenic-differentiated cells. We found that dedifferentiated cells have a multilineage potency comparable to MSC, and also observed the associative role of proliferation genes with cell cycle arrest and progression. Concluded, our results indicate that transdifferentiation of adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and correlates with cell cycle arresting and deriving genes. Regarding clinical use, the knowledge of potency and underlying mechanisms are prerequisites.


Assuntos
Tecido Adiposo/citologia , Desdiferenciação Celular , Diferenciação Celular , Transdiferenciação Celular , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Condrogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese/genética , Células-Tronco/citologia , Regulação para Cima
8.
Cell Tissue Res ; 336(2): 225-36, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19296133

RESUMO

In situ tissue engineering is a promising approach in regenerative medicine, with the possibility that adult stem or progenitor cells will be guided chemotactically to a tissue defect and subsequently differentiate into the surrounding tissue type. Mesenchymal stem cells (MSC) represent attractive candidate cells. Chemokines such as CXCL12 (SDF-1alpha) chemoattract MSC, but little is known about the molecular processes involved in the chemotaxis and migration of MSC. In this study, MSC recruitment by CXCL12 was investigated by genome-wide microarray analysis. The dose-dependent migration potential of bone-marrow-derived MSC toward CXCL12 was measured in an in vitro assay, with a maximum being recorded at a concentration of 1,000 nM CXCL12. Microarray analysis of MSC stimulated with CXCL12 and non-stimulated controls showed 30 differentially expressed genes (24 induced and six repressed). Pathway analysis revealed 11 differentially expressed genes involved in cellular movement and cytokine-cytokine receptor interaction, including those for migratory inducers such as the chemokines CXCL8 and CCL26, the leukocyte inhibitory factor, secretogranin II, and prostaglandin endoperoxide synthase 2. These results were confirmed by real-time polymerase chain reaction for selected genes. The obtained data provide further insights into the molecular mechanisms involved in chemotactic processes in cell migration and designate CXCL12 as a promising candidate for in situ recruitment in regenerative therapies.


Assuntos
Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adulto , Separação Celular , Forma Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Exp Cell Res ; 315(8): 1468-79, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19168060

RESUMO

Recruitment of mesenchymal stem cells (MSC) to tissue damages is a promising approach for in situ tissue regeneration. The physiological mechanisms and regulatory processes of MSC trafficking to injured tissue remain poorly understood. However, the pivotal role of chemokines in MSC recruitment has already been shown. The aim of this study was to determine the migratory potential and the gene expression profile of MSC stimulated with the CC chemokine CCL25 (TECK). Bone marrow derived human MSC were exposed to different doses of CCL25 in a standardized chemotaxis assay. Microarray gene expression profiling and pathway analysis were performed for CCL25 stimulated MSC. Maximum migration of MSC towards CCL25 was observed at 10(3) nM. Microarray analysis revealed an induction of molecules directly involved in chemotaxis and homing of bone marrow cells (CXCL1-3, CXCL8, PDE4B), cytoskeletal and membrane reorganisation (CXCL8, PLD1, IGFBP1), cellular polarity (PLD1), and cell movement (CXCL1-3, CXCL6, CXCL8, PTGS2, PDE4B, TGM2). Respective chemokine secretion was confirmed by protein membrane-array analysis. The activation of CXCR2 ligands (CXCL1-3, CXCL5-6, CXCL8) and a LIF-receptor/gp130 ligand (LIF) indicated an involvement of the respective signaling pathways during initiation of chemotaxis and migration. These results suggest CCL25 as a new potential candidate for further in situ regeneration approaches.


Assuntos
Movimento Celular , Quimiocinas CC/farmacologia , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/efeitos dos fármacos , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Eur J Cell Biol ; 87(6): 365-76, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18501472

RESUMO

For bone repair, transplantation of periosteal progenitor cells (PCs), which had been amplified within supportive scaffolds, is applied clinically. More innovative bone tissue engineering approaches focus on the in situ recruitment of stem and progenitor cells to defective sites and their subsequent use for guided tissue repair. Chemokines are known to induce the directed migration of bone marrow CD34(-) mesenchymal stem cells (MSCs). The aim of our study was to determine the chemokine receptor expression profile of human CD34(-) PCs and to demonstrate that these cells migrate upon stimulation with selected chemokines. PCs were isolated from periosteum of the mastoid bone and displayed a homogenous cell population presenting an MSC-related cell-surface antigen profile (ALCAM(+), SH2(+), SH3(+), CD14(-), CD34(-), CD44(+), CD45(-), CD90(+)). The expression profile of chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that PCs express receptors of all four chemokine subfamilies CC, CXC, CX(3)C, and C. Migration of PCs and a dose-dependent migratory effect of the chemokines CCL2 (MCP1), CCL25 (TECK), CXCL8 (IL8), CXCL12 (SDF1alpha), and CXCL13 (BCA1), but not CCL22 (MDC) were demonstrated using a 96-multiwell chemotaxis assay. In conclusion, for the first time, here we report that human PCs express chemokine receptors, present their profile, and demonstrate a dose-dependent migratory effect of distinct chemokines on these cells. These results are promising towards in situ bone repair therapies based on guiding PCs to bone defects, and encourage further in vivo studies.


Assuntos
Células-Tronco Adultas/imunologia , Movimento Celular , Quimiocinas CC/metabolismo , Quimiocinas CXC/metabolismo , Processo Mastoide/imunologia , Periósteo/imunologia , Receptores de Quimiocinas/metabolismo , Adulto , Antígenos CD/análise , Separação Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL13/metabolismo , Relação Dose-Resposta Imunológica , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Humanos , Imuno-Histoquímica , Interleucina-8/metabolismo , Processo Mastoide/citologia , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Periósteo/citologia , Reação em Cadeia da Polimerase , Receptores de Quimiocinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA