Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 189: 114506, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998826

RESUMO

Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents.


Assuntos
Técnicas Fotoacústicas , Meios de Contraste , Diagnóstico por Imagem , Humanos , Melaninas , Técnicas Fotoacústicas/métodos , Distribuição Tecidual
2.
Nat Biotechnol ; 40(4): 598-605, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845372

RESUMO

Reversibly photo-switchable proteins are essential for many super-resolution fluorescence microscopic and optoacoustic imaging methods. However, they have yet to be used as sensors that measure the distribution of specific analytes at the nanoscale or in the tissues of live animals. Here we constructed the prototype of a photo-switchable Ca2+ sensor based on GCaMP5G that can be switched with 405/488-nm light and describe its molecular mechanisms at the structural level, including the importance of the interaction of the core barrel structure of the fluorescent protein with the Ca2+ receptor moiety. We demonstrate super-resolution imaging of Ca2+ concentration in cultured cells and optoacoustic Ca2+ imaging in implanted tumor cells in mice under controlled Ca2+ conditions. Finally, we show the generalizability of the concept by constructing examples of photo-switching maltose and dopamine sensors based on periplasmatic binding protein and G-protein-coupled receptor-based sensors.


Assuntos
Técnicas Fotoacústicas , Animais , Linhagem Celular , Camundongos , Microscopia de Fluorescência/métodos , Técnicas Fotoacústicas/métodos
3.
Sci Rep ; 11(1): 24430, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952915

RESUMO

Bacteria-mediated cancer-targeted therapy is a novel experimental strategy for the treatment of cancers. Bacteria can be engineered to overcome a major challenge of existing therapeutics by differentiating between malignant and healthy tissue. A prerequisite for further development and study of engineered bacteria is a suitable imaging concept which allows bacterial visualization in tissue and monitoring bacterial targeting and proliferation. Optoacoustics (OA) is an evolving technology allowing whole-tumor imaging and thereby direct observation of bacterial colonization in tumor regions. However, bacterial detection using OA is currently hampered by the lack of endogenous contrast or suitable transgene fluorescent labels. Here, we demonstrate improved visualization of cancer-targeting bacteria using OA imaging and E. coli engineered to express tyrosinase, which uses L-tyrosine as the substrate to produce the strong optoacoustic probe melanin in the tumor microenvironment. Tumors of animals injected with tyrosinase-expressing E. coli showed strong melanin signals, allowing to resolve bacterial growth in the tumor over time using multispectral OA tomography (MSOT). MSOT imaging of melanin accumulation in tumors was confirmed by melanin and E. coli staining. Our results demonstrate that using tyrosinase-expressing E. coli enables non-invasive, longitudinal monitoring of bacterial targeting and proliferation in cancer using MSOT.


Assuntos
Neoplasias do Colo/terapia , Escherichia coli/metabolismo , Monofenol Mono-Oxigenase/uso terapêutico , Técnicas Fotoacústicas/métodos , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
4.
Neoplasia ; 22(9): 441-446, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32653834

RESUMO

Widespread metastasis is the major cause of death from melanoma and other types of cancer. At present, the dynamic aspects of the metastatic cascade remain enigmatic. The feasibility to track circulating melanoma cells deep within living intact organisms can greatly impact our knowledge on tumor metastasis, but existing imaging approaches lack the sensitivity, spatio-temporal resolution or penetration depth to capture flowing tumor cells over large fields of view within optically-opaque biological tissues. Vast progress with the development of optoacoustic tomography technologies has recently enabled two- and three-dimensional imaging at unprecedented frame rates in the order of hundreds of Hertz, effectively mapping up to a million image voxels within a single volumetric snapshot. Herein, we employ volumetric optoacoustic tomography for real-time visualization of passage and trapping of individual B16 melanoma cells in the whole mouse brain. Detection of individual circulating melanoma cells was facilitated by substituting blood with an artificial cerebrospinal fluid that removes the strong absorption background in the optoacoustic images. The approach can provide new opportunities for studying trafficking and accumulation of metastatic melanoma cells in different organs.


Assuntos
Encéfalo/patologia , Coração/fisiologia , Imageamento Tridimensional/métodos , Melanoma Experimental/patologia , Células Neoplásicas Circulantes/patologia , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Apoptose , Encéfalo/diagnóstico por imagem , Proliferação de Células , Melanoma Experimental/diagnóstico por imagem , Camundongos , Células Tumorais Cultivadas
5.
Sci Adv ; 6(24): eaaz6293, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32582850

RESUMO

We introduce two photochromic proteins for cell-specific in vivo optoacoustic (OA) imaging with signal unmixing in the temporal domain. We show highly sensitive, multiplexed visualization of T lymphocytes, bacteria, and tumors in the mouse body and brain. We developed machine learning-based software for commercial imaging systems for temporal unmixed OA imaging, enabling its routine use in life sciences.


Assuntos
Técnicas Fotoacústicas , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Proteínas , Software
6.
Nat Commun ; 10(1): 5056, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699983

RESUMO

Macrophages are one of the most functionally-diverse cell types with roles in innate immunity, homeostasis and disease making them attractive targets for diagnostics and therapy. Photo- or optoacoustics could provide non-invasive, deep tissue imaging with high resolution and allow to visualize the spatiotemporal distribution of macrophages in vivo. However, present macrophage labels focus on synthetic nanomaterials, frequently limiting their ability to combine both host cell viability and functionality with strong signal generation. Here, we present a homogentisic acid-derived pigment (HDP) for biocompatible intracellular labeling of macrophages with strong optoacoustic contrast efficient enough to resolve single cells against a strong blood background. We study pigment formation during macrophage differentiation and activation, and utilize this labeling method to track migration of pro-inflammatory macrophages in vivo with whole-body imaging. We expand the sparse palette of macrophage labels for in vivo optoacoustic imaging and facilitate research on macrophage functionality and behavior.


Assuntos
Ácido Homogentísico/química , Microscopia Intravital/métodos , Ativação de Macrófagos , Macrófagos/citologia , Técnicas Fotoacústicas/métodos , Pigmentos Biológicos/química , Coloração e Rotulagem/métodos , Animais , Materiais Biocompatíveis , Diferenciação Celular , Citocinas/metabolismo , Ouro , Células HEK293 , Células HeLa , Humanos , L-Lactato Desidrogenase/metabolismo , Macrófagos/metabolismo , Melaninas , Camundongos , Nanopartículas , Nanotubos
7.
Nat Commun ; 10(1): 1191, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867430

RESUMO

Τhe morphology, physiology and immunology, of solid tumors exhibit spatial heterogeneity which complicates our understanding of cancer progression and therapy response. Understanding spatial heterogeneity necessitates high resolution in vivo imaging of anatomical and pathophysiological tumor information. We introduce Rhodobacter as bacterial reporter for multispectral optoacoustic (photoacoustic) tomography (MSOT). We show that endogenous bacteriochlorophyll a in Rhodobacter gives rise to strong optoacoustic signals >800 nm away from interfering endogenous absorbers. Importantly, our results suggest that changes in the spectral signature of Rhodobacter which depend on macrophage activity inside the tumor can be used to reveal heterogeneity of the tumor microenvironment. Employing non-invasive high resolution MSOT in longitudinal studies we show spatiotemporal changes of Rhodobacter spectral profiles in mice bearing 4T1 and CT26.WT tumor models. Accessibility of Rhodobacter to genetic modification and thus to sensory and therapeutic functions suggests potential for a theranostic platform organism.


Assuntos
Técnicas Biossensoriais/métodos , Macrófagos/imunologia , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Rhodobacter/química , Nanomedicina Teranóstica/métodos , Animais , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/imunologia , Rhodobacter/metabolismo , Tomografia Computadorizada por Raios X/métodos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA