Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Mol Biol ; 18(1): 8, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298204

RESUMO

BACKGROUND: Immunoglobulins (Igs) are fundamental components of the adaptive immune system of vertebrates, with the IgT/IgZ isotype specific of Teleosts. In this paper we describe the identification of an IgT heavy chain from the European sea bass (Dicentrarchus labrax L.), its molecular characterization and tissue mRNA localization by in situ hybridization. RESULTS: Sea bass IgT consists of 552 aa (Accession Number KM410929) and it contains a putative 19 amino acids long signal peptide and one potential N-glycosylation site. The C-region consists of four CH domains; each contains the cysteine and tryptophan residues required for their correct folding. Based on the recent sequencing of sea bass genome, we have identified five different genomic contigs bearing exons unequivocally pertaining to IgT (CH2, CH3 and CH4), but none corresponded to a complete IgH locus as IgT sequences were found in the highly fragmented assembled genomic regions which could not be assigned to any major scaffold. The 3D structure of sea bass IgT has been modelled using the crystal structure of a mouse Ig gamma as a template, thus showing that the amino acid sequence is suitable for the expected topology referred to an immunoglobulin-like architecture. The basal expression of sea bass IgT and IgM in different organs has been analysed: gut and gills, important mucosal organs, showed high IgT transcripts levels and this was the first indication of the possible involvement of sea bass IgT in mucosal immune responses. Moreover, sea bass IgT expression increased in gills and spleen after infection with nodavirus, highlighting the importance of IgT in sea bass immune responses. In situ hybridization confirmed the presence of IgT transcripts in the gut and it revealed a differential expression along the intestinal tract, with a major expression in the posterior intestine, suggesting the hindgut as a site for the recruitment of IgT+ cells in this species. IgT transcripts were also found in gill filaments and parallel lamellae and, for the first time, we identified scattered IgT positive cells in the liver, with a strong signal in the hepatic parenchyma. CONCLUSIONS: In conclusion, we performed a full molecular characterization of IgT in sea bass that points out its possible involvement in mucosal immune responses of this species.


Assuntos
Bass/imunologia , Bass/virologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Imunoglobulinas/imunologia , Nodaviridae/imunologia , Infecções por Vírus de RNA/veterinária , Sequência de Aminoácidos , Animais , Bass/genética , Clonagem Molecular , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunidade nas Mucosas , Imunoglobulinas/química , Imunoglobulinas/genética , Modelos Moleculares , Filogenia , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Alinhamento de Sequência
2.
Methods Mol Biol ; 1044: 147-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23896875

RESUMO

Chromosome aberration tests are used to evaluate the clastogenicity of chemical and physical agents, that is, the capacity of these agents to cause breaks in chromosomes and produce microscopically visible fragments or structural rearrangements. Aberrations are scored in metaphase chromosomes of dividing cells. In the mouse, bone marrow progenitors of erythrocytes and leukocytes provide abundant metaphases to study the effects on somatic cells, whereas the response of male germ cells to clastogenic agents can be visualized on metaphases of spermatogonia and primary spermatocytes. The techniques to prepare the slides for analyses are well standardized and internationally harmonized protocols for tests in bone marrow and spermatogonia provide the guidance necessary to obtain meaningful results. It is advisable to adhere as much as possible to these recommendations. Not all tests are suitable to score the same kind of aberrations. Here an overview of the application domains of these tests is provided with warnings on the scoring criteria and statistical analysis.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Aberrações Cromossômicas , Análise Citogenética/métodos , Espermatozoides/citologia , Espermatozoides/metabolismo , Animais , Masculino , Camundongos , Espermatócitos/citologia , Espermatócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA