Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Protein Sci ; 33(1): e4842, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032325

RESUMO

In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.


Assuntos
Creatina , Proteínas de Membrana Transportadoras , Humanos , Creatina/genética , Creatina/metabolismo , Mutagênese , Mutação
2.
Elife ; 122023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763413

RESUMO

ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive. Here, we present methods to concomitantly investigate substrate and nucleotide binding by ABCG2 in cells. Using the conformation-sensitive antibody 5D3, we show that the switch from the inward-facing (IF) to the outward-facing (OF) conformation of ABCG2 is induced by nucleotide binding. IF-OF transition is facilitated by substrates, and hindered by the inhibitor Ko143. Direct measurements of 5D3 and substrate binding to ABCG2 indicate that the high-to-low affinity switch of the drug binding site coincides with the transition from the IF to the OF conformation. Low substrate binding persists in the post-hydrolysis state, supporting that dissociation of the ATP hydrolysis products is required to reset the high substrate affinity IF conformation of ABCG2.


Assuntos
Trifosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Conformação Proteica
3.
FEBS Lett ; 594(23): 3815-3838, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179257

RESUMO

ATP-binding cassette (ABC) transporters are fascinating molecular machines that are capable of transporting a large variety of chemically diverse compounds. The energy required for translocation is derived from binding and hydrolysis of ATP. All ABC transporters share a basic architecture and are composed of two transmembrane domains and two nucleotide binding domains (NBDs). The latter harbor all conserved sequence motifs that hallmark the ABC transporter superfamily. The NBDs form the nucleotide binding sites (NBSs) in their interface. Transporters with two active NBSs are called canonical transporters, while ABC exporters from eukaryotic organisms, including humans, frequently have a degenerate NBS1 containing noncanonical residues that strongly impair ATP hydrolysis. Here, we summarize current knowledge on degenerate ABC transporters. By integrating structural information with biophysical and biochemical evidence of asymmetric function, we develop a model for the transport cycle of degenerate ABC transporters. We will elaborate on the unclear functional advantages of a degenerate NBS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/classificação , Animais , Sítios de Ligação , Humanos , Hidrólise
4.
PLoS Genet ; 16(10): e1009016, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031417

RESUMO

Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degenerate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1 transport-incompetent. In contrast, the closely related bile salt export pump ABCB11 (BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent transport activity, when three additional diverging residues are also replaced. Molecular dynamics simulations revealed that the rescue of ATPase activity is due to the modified geometry of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport. In summary, we show that ABCB1 can be transformed into an active transporter with only one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic state in the non-canonical site.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico/genética , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Domínio AAA/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Transporte Biológico Ativo/genética , Domínio Catalítico/genética , Ácido Glutâmico/genética , Humanos , Hidrólise , Metionina/genética , Simulação de Dinâmica Molecular , Mutação/genética , Nucleotídeos/genética , Ligação Proteica/genética , Domínios Proteicos/genética
5.
Mol Pharmacol ; 98(3): 250-266, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32817461

RESUMO

In medium-size, spiny striatal neurons of the direct pathway, dopamine D1- and adenosine A1-receptors are coexpressed and are mutually antagonistic. Recently, a mutation in the gene encoding the A1-receptor (A1R), A1R-G279S7.44, was identified in an Iranian family: two affected offspring suffered from early-onset l-DOPA-responsive Parkinson's disease. The link between the mutation and the phenotype is unclear. Here, we explored the functional consequence of the G279S substitution on the activity of the A1-receptor after heterologous expression in HEK293 cells. The mutation did not affect surface expression and ligand binding but changed the susceptibility to heat denaturation: the thermodynamic stability of A1R-G279S7.44 was enhanced by about 2 and 8 K when compared with wild-type A1-receptor and A1R-Y288A7.53 (a folding-deficient variant used as a reference), respectively. In contrast, the kinetic stability was reduced, indicating a lower energy barrier for conformational transitions in A1R-G279S7.44 (73 ± 23 kJ/mol) than in wild-type A1R (135 ± 4 kJ/mol) or in A1R-Y288A7.53 (184 ± 24 kJ/mol). Consistent with this lower energy barrier, A1R-G279S7.44 was more effective in promoting guanine nucleotide exchange than wild-type A1R. We detected similar levels of complexes formed between D1-receptors and wild-type A1R or A1R-G279S7.44 by coimmunoprecipitation and bioluminescence resonance energy transfer. However, lower concentrations of agonist were required for half-maximum inhibition of dopamine-induced cAMP accumulation in cells coexpressing D1-receptor and A1R-G279S7.44 than in those coexpressing wild-type A1R. These observations predict enhanced inhibition of dopaminergic signaling by A1R-G279S7.44 in vivo, consistent with a pathogenic role in Parkinson's disease. SIGNIFICANCE STATEMENT: Parkinson's disease is caused by a loss of dopaminergic input from the substantia nigra to the caudate nucleus and the putamen. Activation of the adenosine A1-receptor antagonizes responses elicited by dopamine D1-receptor. We show that this activity is more pronounced in a mutant version of the A1-receptor (A1R-G279S7.44), which was identified in individuals suffering from early-onset Parkinson's disease.


Assuntos
Substituição de Aminoácidos , Doença de Parkinson/genética , Receptor A1 de Adenosina/química , Receptor A1 de Adenosina/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Receptor A1 de Adenosina/genética , Termodinâmica
6.
Sci Rep ; 10(1): 2589, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054924

RESUMO

P-glycoprotein (ABCB1) is an important component of barrier tissues that extrudes a wide range of chemically unrelated compounds. ABCB1 consists of two transmembrane domains forming the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that provide the energy by binding and hydrolyzing ATP. We analyzed the mechanistic and energetic properties of the NBD dimer via molecular dynamics simulations. We find that MgATP stabilizes the NBD dimer through strong attractive forces by serving as an interaction hub. The irreversible ATP hydrolysis step converts the chemical energy stored in the phosphate bonds of ATP into potential energy. Following ATP hydrolysis, interactions between the NBDs and the ATP hydrolysis products MgADP + Pi remain strong, mainly because Mg2+ forms stabilizing interactions with ADP and Pi. Despite these stabilizing interactions MgADP + Pi are unable to hold the dimer together, which becomes separated by avid interactions of MgADP + Pi with water. ATP binding to the open NBDs and ATP hydrolysis in the closed NBD dimer represent two steps of energy input, each leading to the formation of a high energy state. Relaxation from these high energy states occurs through conformational changes that push ABCB1 through the transport cycle.


Assuntos
Trifosfato de Adenosina/metabolismo , Nucleotídeos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Fenômenos Biomecânicos , Metabolismo Energético , Humanos , Hidrólise , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
7.
Nat Commun ; 10(1): 5433, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780715

RESUMO

The human ATP-binding cassette transporter ABCG2 is a key to anticancer resistance and physiological detoxification. However, the molecular mechanism of substrate transport remains enigmatic. A hydrophobic di-leucine motif in the ABCG2 core separates a large intracellular cavity from a smaller upper cavity. We show that the di-leucine motif acts as a valve that controls drug extrusion. Moreover, the extracellular structure engages the re-entry helix and all extracellular loops to form a roof architecture on top of the upper cavity. Disulfide bridges and a salt bridge limit roof flexibility, but provide a lid-like function to control drug release. We propose that drug translocation from the central to the upper cavities through the valve is driven by a squeezing motion, suggesting that ABCG2 operates similar to a peristaltic pump. Finally, the roof contains essential residues, offering therapeutic options to block ABCG2 by either targeting the valve or essential residues in the roof.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Antineoplásicos/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Mitoxantrona/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/ultraestrutura
8.
Chemistry ; 24(20): 5303-5308, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29178484

RESUMO

We have generated a site-directed mutant of the manganese superoxide dismutase SOD-3 of C.elegans (MnSOD-3) which modifies the metal specificity of the enzyme. While wild-type MnSOD-3 functions with manganese in the active site (3600 U mg-1 of protein) it has little or no activity when iron is incorporated. However, when histidine replaces glutamine 142 in the active site, the enzyme retains 50 % of its activity and becomes cambialistic for its metal cofactor exhibiting very similar specific activity with either manganese or iron.


Assuntos
Ferro/química , Metais/química , Superóxido Dismutase/química , Domínio Catalítico , DNA , Eucariotos , Expressão Gênica , Glutamina/química , Histidina/química , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Ligação Proteica , Conformação Proteica , Sensibilidade e Especificidade , Eletricidade Estática , Superóxido Dismutase/genética
9.
Biochim Biophys Acta Biomembr ; 1860(4): 818-832, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29097275

RESUMO

ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain."


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Conformação Proteica , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Humanos , Ligação Proteica
10.
Sci Rep ; 7(1): 13767, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061978

RESUMO

The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/metabolismo , Xenobióticos/metabolismo , Catálise , Domínio Catalítico , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
11.
Nat Commun ; 8: 14089, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102201

RESUMO

The human serotonin transporter (hSERT) mediates uptake of serotonin from the synaptic cleft and thereby terminates serotonergic signalling. We have previously found by single-molecule microscopy that SERT forms stable higher-order oligomers of differing stoichiometry at the plasma membrane of living cells. Here, we report that SERT oligomer assembly at the endoplasmic reticulum (ER) membrane follows a dynamic equilibration process, characterized by rapid exchange of subunits between different oligomers, and by a concentration dependence of the degree of oligomerization. After trafficking to the plasma membrane, however, the SERT stoichiometry is fixed. Stabilization of the oligomeric SERT complexes is mediated by the direct binding to phosphoinositide phosphatidylinositol-4,5-biphosphate (PIP2). The observed spatial decoupling of oligomer formation from the site of oligomer operation provides cells with the ability to define protein quaternary structures independent of protein density at the cell surface.


Assuntos
Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Células CHO , Cricetulus , Retículo Endoplasmático , Regulação da Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
12.
Biochem Soc Trans ; 43(5): 1023-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517918

RESUMO

ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Simulação de Dinâmica Molecular , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes
13.
Drug Discov Today Technol ; 12: e87-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25027379

RESUMO

The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase Intra-Hepática/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Deficiências na Proteostase/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Colestase Intra-Hepática/metabolismo , Ensaios Clínicos como Assunto , Fibrose Cística/metabolismo , Descoberta de Drogas , Humanos , Ligação Proteica , Dobramento de Proteína , Transporte Proteico , Deficiências na Proteostase/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico
14.
Mol Cancer Ther ; 13(7): 1777-1790, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24755200

RESUMO

Passive immunotherapy with monoclonal antibodies represents a cornerstone of human anticancer therapies, but has not been established in veterinary medicine yet. As the tumor-associated antigen EGFR (ErbB-1) is highly conserved between humans and dogs, and considering the effectiveness of the anti-EGFR antibody cetuximab in human clinical oncology, we present here a "caninized" version of this antibody, can225IgG, for comparative oncology studies. Variable region genes of 225, the murine precursor of cetuximab, were fused with canine constant heavy gamma and kappa chain genes, respectively, and transfected into Chinese hamster ovary (CHO) DUKX-B11 cells. Of note, 480 clones were screened and the best clones were selected according to productivity and highest specificity in EGFR-coated ELISA. Upon purification with Protein G, the recombinant cetuximab-like canine IgG was tested for integrity, correct assembly, and functionality. Specific binding to the surface of EGFR-overexpressing cells was assessed by flow cytometry and immunofluorescence; moreover, binding to canine mammary tissue was demonstrated by immunohistochemistry. In cell viability and proliferation assays, incubation with can225IgG led to significant tumor cell growth inhibition. Moreover, this antibody mediated significant tumor cell killing via phagocytosis in vitro. We thus present here, for the first time, the generation of a canine IgG antibody and its hypothetical structure. On the basis of its cetuximab-like binding site, on the one hand, and the expression of a 91% homologous EGFR molecule in canine cancer, on the other hand, this antibody may be a promising research compound to establish passive immunotherapy in dog patients with cancer.


Assuntos
Doenças do Cão/terapia , Receptores ErbB/imunologia , Imunização Passiva/métodos , Imunoglobulina G/imunologia , Neoplasias/veterinária , Animais , Células CHO , Processos de Crescimento Celular/imunologia , Dicroísmo Circular , Cricetinae , Cricetulus , Doenças do Cão/imunologia , Cães , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Transfecção
15.
Cell Calcium ; 54(3): 175-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23800762

RESUMO

Utilizing a novel molecular model of TRPC3, based on the voltage-gated sodium channel from Arcobacter butzleri (Na(V)AB) as template, we performed structure-guided mutagenesis experiments to identify amino acid residues involved in divalent permeation and gating. Substituted cysteine accessibility screening within the predicted selectivity filter uncovered amino acids 629-631 as the narrowest part of the permeation pathway with an estimated pore diameter of < 5.8Å. E630 was found to govern not only divalent permeability but also sensitivity of the channel to block by ruthenium red. Mutations in a hydrophobic cluster at the cytosolic termini of transmembrane segment 6, corresponding to the S6 bundle crossing structure in Na(V)AB, distorted channel gating. Removal of a large hydrophobic residue (I667A or I667E) generated channels with approximately 60% constitutive activity, suggesting I667 as part of the dynamic structure occluding the permeation path. Destabilization of the gate was associated with reduced Ca2+ permeability, altered cysteine cross-linking in the selectivity filter and promoted channel block by ruthenium red. Collectively, we present a structural model of the TRPC3 permeation pathway and localize the channel's selectivity filter and the occluding gate. Moreover, we provide evidence for allosteric coupling between the gate and the selectivity filter in TRPC3.


Assuntos
Modelos Moleculares , Canais de Cátion TRPC/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Arcobacter/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Rutênio Vermelho/farmacologia , Eletricidade Estática , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética
16.
PLoS Comput Biol ; 9(2): e1002909, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23436987

RESUMO

The high-resolution crystal structure of the leucine transporter (LeuT) is frequently used as a template for homology models of the dopamine transporter (DAT). Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i) when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii) LeuT and DAT share a rather low overall sequence identity (22%) and (iii) the extracellular loop 2 (EL2) of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Zinco/metabolismo , 1-Metil-4-fenilpiridínio/química , Sequência de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Água/química , Zinco/química
17.
Mol Immunol ; 50(4): 200-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22424313

RESUMO

To facilitate comparative oncology trials we compared the biological and molecular homologies of canine (dog; Canis lupus familiaris) and human tumor-associated antigens ErbB-1 and -2. Further, we investigated whether they could serve as targets for anti-ErbB-1 (cetuximab) and anti-ErbB-2 antibodies (trastuzumab), which are highly relevant in human clinical oncology. Immunohistochemistry of canine mammary cancer showed ErbB-1 overexpression in 3/10 patients and ErbB-2 in 4/10. We report 91% amino acid homology for ErbB-1 and 92% for ErbB-2 between canine and human molecules. Modeling of canine on human ErbB-1 revealed that the cetuximab epitope only differs by 4 amino acids: Lys443 is replaced by Arg, Ser468 by Asn, Gly471 by Asp, and Asn473 by Lys in canines. The trastuzumab binding site is identical in human and canine ErbB-2 apart from a single amino acid change (Pro557 to Ser). Binding of cetuximab and trastuzumab to canine mammary carcinoma cells CF33, CF41, Sh1b and P114 was confirmed by flow cytometry. Both antibodies significantly inhibited canine tumor cell proliferation partly due to growth arrest in G(0)/G(1) phase. We explain the lower efficiency on the tested canine than on human SKBR3 and A431 cells, by a 2-log lower expression level of the canine ErbB-1 and -2 molecules. Our results indicate significant homology of human and canine Erb-1 and -2 tumor associated antigens. The fact that the canine homologues express the cetuximab and trastuzumab epitopes may facilitate antibody-based immunotherapy in dogs. Importantly, the striking similarities of ErbB-1 and -2 molecules open up avenues towards comparative strategies for targeted drug development.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/veterinária , Receptores ErbB/genética , Receptor ErbB-2/genética , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Ciclo Celular/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Cetuximab , Cães , Receptores ErbB/química , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Imuno-Histoquímica , Estrutura Quaternária de Proteína , Receptor ErbB-2/química , Homologia de Sequência de Aminoácidos , Trastuzumab
18.
Curr Top Med Chem ; 10(17): 1769-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20645918

RESUMO

Design of inhibitors of P-glycoprotein still represents a challenging task for medicinal chemists. The polyspecificity of the transporter combined with the limited structural information renders rational drug design approaches rather ineffective. Within this article we will exemplify how recent insights into structure and mechanism of P-glycoprotein may aid in design of potent inhibitors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Desenho de Fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Humanos , Estrutura Molecular
19.
J Am Chem Soc ; 132(23): 7990-7, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20527936

RESUMO

Anesthetic drugs have been in use for over 160 years in surgery, but their mode of action remains largely unresolved. We have studied the effect of (R)-(-)-ketamine on the biophysical properties of lipid model membranes composed of palmitoyloleoylphosphatidylcholine by a combination of X-ray diffraction and all-atom molecular dynamics simulations. In agreement with several previous studies, we do not find significant changes to the membrane thickness and lateral area per lipid up to 8 mol % ketamine content. However, we observed that the insertion of ketamine within the lipid/water interface caused significant changes of lateral pressure and a pressure shift toward the center of the bilayer. The changes are predicted to be large enough to affect the opening probability of ion channels as derived for two protein models. Depending on the protein model, we found inhibition values of IC(50) = 2 mol % and 18 mol % ketamine, corresponding to approximately 0.08 and 0.9 muM concentrations in the blood circulation, respectively. This compares remarkably well with clinical applied concentrations. We thus provide evidence for a lateral pressure mediated mode of anesthesia, first proposed more than 10 years ago.


Assuntos
Anestésicos/farmacologia , Membrana Celular/metabolismo , Canais Iônicos/metabolismo , Ketamina/farmacologia , Anestésicos/administração & dosagem , Anestésicos/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Ketamina/administração & dosagem , Ketamina/química , Proteínas de Membrana/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Pressão , Espalhamento a Baixo Ângulo , Estereoisomerismo , Difração de Raios X
20.
FEBS J ; 276(4): 964-72, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19215299

RESUMO

Human P-glycoprotein is an ATP-binding cassette transporter that plays an important role in the defence against potentially harmful molecules from the environment. It is involved in conferring resistance against cancer therapeutics and plays an important role for the pharmacokinetics of drugs. The lack of a high resolution structure of P-glycoprotein has hindered its functional understanding and represents an obstacle for structure based drug development. The homologous bacterial exporter Sav1866 has been shown to share a common architecture and overlapping substrate specificity with P-glycoprotein. The structure of Sav1866 suggests that helices in the transmembrane domains diverge at the extracytoplasmic face, whereas cross-link information and a combination of small angle X-ray scattering and cryo-electron crystallography data indicate that helices 6 and 12 of P-glycoprotein are closer in P-glycoprotein than in the crystal structure of Sav1866. Using homology modelling, we present evidence that the protein possesses intrinsic structural flexibility to allow cross-links to occur between helices 6 and 12 of P-glycoprotein, thereby reconciling crystallographic models with available experimental data from cross-linking.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA