Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(7): 5208-5222, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36944083

RESUMO

The C-X-C chemokine receptor type 4, or CXCR4, is a chemokine receptor found to promote cancer progression and metastasis of various cancer cell types. To investigate the pharmacology of this receptor, and to further elucidate its role in cancer, novel chemical tools are a necessity. In the present study, using classic medicinal chemistry approaches, small-molecule-based fluorescent probes were designed and synthesized based on previously reported small-molecule antagonists. Here, we report the development of three distinct chemical classes of fluorescent probes that show specific binding to the CXCR4 receptor in a novel fluorescence-based NanoBRET binding assay (pKD ranging 6.6-7.1). Due to their retained affinity at CXCR4, we furthermore report their use in competition binding experiments and confocal microscopy to investigate the pharmacology and cellular distribution of this receptor.


Assuntos
Corantes Fluorescentes , Receptores CXCR4 , Receptores CXCR4/metabolismo , Ligantes , Corantes Fluorescentes/química , Ligação Proteica , Quimiocinas/metabolismo , Quimiocina CXCL12/metabolismo
2.
J Med Chem ; 65(12): 8258-8288, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35734860

RESUMO

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.


Assuntos
Histamina , Receptores Histamínicos H1 , Corantes Fluorescentes/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptídeos , Receptores Histamínicos/metabolismo , Receptores Histamínicos H1/metabolismo
3.
J Med Chem ; 64(10): 6670-6695, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33724031

RESUMO

The adenosine A1 receptor (A1AR) is a G-protein-coupled receptor (GPCR) that provides important therapeutic opportunities for a number of conditions including congestive heart failure, tachycardia, and neuropathic pain. The development of A1AR-selective fluorescent ligands will enhance our understanding of the subcellular mechanisms underlying A1AR pharmacology facilitating the development of more efficacious and selective therapies. Herein, we report the design, synthesis, and application of a novel series of A1AR-selective fluorescent probes based on 8-functionalized bicyclo[2.2.2]octylxanthine and 3-functionalized 8-(adamant-1-yl) xanthine scaffolds. These fluorescent conjugates allowed quantification of kinetic and equilibrium ligand binding parameters using NanoBRET and visualization of specific receptor distribution patterns in living cells by confocal imaging and total internal reflection fluorescence (TIRF) microscopy. As such, the novel A1AR-selective fluorescent antagonists described herein can be applied in conjunction with a series of fluorescence-based techniques to foster understanding of A1AR molecular pharmacology and signaling in living cells.


Assuntos
Antagonistas do Receptor A1 de Adenosina/síntese química , Corantes Fluorescentes/química , Receptor A1 de Adenosina/química , Antagonistas do Receptor A1 de Adenosina/metabolismo , Compostos Bicíclicos com Pontes/química , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Cinética , Ligantes , Octanos/química , Receptor A1 de Adenosina/metabolismo , Relação Estrutura-Atividade , Xantina/química , Xantina/metabolismo
4.
FASEB J ; 35(4): e21211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710641

RESUMO

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3 AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3 AR and A3 AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit ß-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated ß-arrestin recruitment and membrane reorganization of the A3 AR.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/análogos & derivados , Compostos de Boro/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptor A3 de Adenosina/metabolismo , Adenosina/farmacologia , Animais , Arrestina/metabolismo , Células CHO , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Mutação , Ligação Proteica , Receptor A3 de Adenosina/genética
5.
Commun Biol ; 3(1): 722, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247190

RESUMO

To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the receptor or the limitations of dissociable fluorescent ligands, here we describe rational design of a compound that covalently and selectively labels a GPCR in living cells with a fluorescent moiety. We designed a fluorescent antagonist, in which the linker incorporated between pharmacophore (ZM241385) and fluorophore (sulfo-cyanine5) is able to facilitate covalent linking of the fluorophore to the adenosine A2A receptor. We pharmacologically and biochemically demonstrate irreversible fluorescent labelling without impeding access to the orthosteric binding site and demonstrate its use in endogenously expressing systems. This offers a non-invasive and selective approach to study function and localisation of native GPCRs.


Assuntos
Corantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismo , Triazinas , Triazóis , Marcadores de Afinidade , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Receptor A2A de Adenosina/metabolismo
6.
Nanoscale ; 12(21): 11518-11525, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32428052

RESUMO

The fundamental importance of membrane proteins in cellular processes has driven a marked increase in the use of membrane mimetic approaches for studying and exploiting these proteins. Nano-encapsulation strategies which preserve the native lipid bilayer environment are particularly attractive. Consequently, the use of poly(styrene co-maleic acid) (SMA) has been widely adopted to solubilise proteins directly from cell membranes by spontaneously forming "SMA Lipid Particles" (SMALPs). G-protein-coupled receptors (GPCRs) are ubiquitous "chemical switches", are central to cell signalling throughout the evolutionary tree, form the largest family of membrane proteins in humans and are a major drug discovery target. GPCR-SMALPs that retain binding capability would be a versatile platform for a wide range of down-stream applications. Here, using the adenosine A2A receptor (A2AR) as an archetypical GPCR, we show for the first time the utility of fluorescence correlation spectroscopy (FCS) to characterise the binding capability of GPCRs following nano-encapsulation. Unbound fluorescent ligand CA200645 exhibited a monophasic autocorrelation curve (dwell time, τD = 68 ± 2 µs; diffusion coefficient, D = 287 ± 15 µm2 s-1). In the presence of A2AR-SMALP, bound ligand was also evident (τD = 625 ± 23 µs; D = 30 ± 4 µm2 s-1). Using a non-receptor control (ZipA-SMALP) plus competition binding confirmed that this slower component represented binding to the encapsulated A2AR. Consequently, the combination of GPCR-SMALP and FCS is an effective platform for the quantitative real-time characterisation of nano-encapsulated receptors, with single molecule sensitivity, that will have widespread utility for future exploitation of GPCR-SMALPs in general.


Assuntos
Ligantes , Maleatos/química , Receptores Acoplados a Proteínas G/metabolismo , Estireno/química , Materiais Biomiméticos , Fluorescência , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ligação Proteica , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/química , Imagem Individual de Molécula , Espectrometria de Fluorescência
7.
J Med Chem ; 63(5): 2656-2672, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31887252

RESUMO

Among class A G protein-coupled receptors (GPCR), the human adenosine A2A receptor (hA2AAR) remains an attractive drug target. However, translation of A2AAR ligands into the clinic has proved challenging and an improved understanding of A2AAR pharmacology could promote development of more efficacious therapies. Subtype-selective fluorescent probes would allow detailed real-time pharmacological investigations both in vitro and in vivo. In the present study, two families of fluorescent probes were designed around the known hA2AAR selective antagonist preladenant (SCH 420814). Both families of fluorescent antagonists retained affinity at the hA2AAR, selectivity over all other adenosine receptor subtypes and allowed clear visualization of specific receptor localization through confocal imaging. Furthermore, the Alexa Fluor 647-labeled conjugate allowed measurement of ligand binding affinities of unlabeled hA2AAR antagonists using a bioluminescence resonance energy transfer (NanoBRET) assay. The fluorescent ligands developed here can therefore be applied to a range of fluorescence-based techniques to further interrogate hA2AAR pharmacology and signaling.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Corantes Fluorescentes/química , Pirimidinas/química , Receptor A2A de Adenosina/análise , Triazóis/química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Descoberta de Drogas , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Imagem Óptica , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Triazóis/metabolismo , Triazóis/farmacologia
8.
Methods Mol Biol ; 2041: 163-181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646488

RESUMO

Fluorescent antagonists offer the ability to interrogate G protein-coupled receptor pharmacology. With resonance energy transfer techniques, fluorescent antagonists can be implemented to monitor receptor-ligand interactions using assays originally designed for radiolabeled probes. The fluorescent nature of these antagonists also enables the localization and distribution of the receptors to be visualized in living cells. Here, we describe the generation of modified purinergic receptors with the NanoLuc luciferase or SNAP-tag, using the P1 adenosine A3 receptor as an example. We also describe the procedure of characterizing a novel fluorescent purinergic antagonist using ligand-mediated bioluminescence resonance energy transfer assays and confocal microscopy.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Microscopia de Fluorescência/métodos , Agonistas do Receptor Purinérgico P1/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Fluorescência , Células HEK293 , Humanos , Luciferases/metabolismo , Ligação Proteica , Multimerização Proteica , Agonistas do Receptor Purinérgico P1/química , Receptor A3 de Adenosina/química , Receptores Purinérgicos P1/química , Transdução de Sinais
9.
Purinergic Signal ; 15(2): 139-153, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30919204

RESUMO

There is a growing interest in understanding the binding kinetics of compounds that bind to G protein-coupled receptors prior to progressing a lead compound into clinical trials. The widely expressed adenosine A3 receptor (A3AR) has been implicated in a range of diseases including immune conditions, and compounds that aim to selectively target this receptor are currently under development for arthritis. Kinetic studies at the A3AR have been performed using a radiolabelled antagonist, but due to the kinetics of this probe, they have been carried out at 10 °C in membrane preparations. In this study, we have developed a live cell NanoBRET ligand binding assay using fluorescent A3AR antagonists to measure kinetic parameters of labelled and unlabelled compounds at the A3AR at physiological temperatures. The kinetic profiles of four fluorescent antagonists were determined in kinetic association assays, and it was found that XAC-ser-tyr-X-BY630 had the longest residence time (RT = 288 ± 62 min) at the A3AR. The association and dissociation rate constants of three antagonists PSB-11, compound 5, and LUF7565 were also determined using two fluorescent ligands (XAC-ser-tyr-X-BY630 or AV039, RT = 6.8 ± 0.8 min) as the labelled probe and compared to those obtained using a radiolabelled antagonist ([3H]PSB-11, RT = 44.6 ± 3.9 min). There was close agreement in the kinetic parameters measured with AV039 and [3H]PSB-11 but significant differences to those obtained using XAC-S-ser-S-tyr-X-BY630. These data indicate that selecting a probe with the appropriate kinetics is important to accurately determine the kinetics of unlabelled ligands with markedly different kinetic profiles.


Assuntos
Antagonistas do Receptor A3 de Adenosina/farmacocinética , Transferência Ressonante de Energia de Fluorescência/métodos , Medições Luminescentes , Receptor A3 de Adenosina/metabolismo , Células HEK293 , Humanos , Cinética
10.
J Med Chem ; 61(7): 3089-3113, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29558126

RESUMO

The human P2Y2 receptor ( hP2Y2R) is a G-protein-coupled receptor that shows promise as a therapeutic target for many important conditions, including for antimetastatic cancer and more recently for idiopathic pulmonary fibrosis. As such, there is a need for new hP2Y2R antagonists and molecular probes to study this receptor. Herein, we report the development of a new series of non-nucleotide hP2Y2R antagonists, based on the known, non-nucleotide hP2Y2R antagonist AR-C118925 (1), leading to the discovery of a series of fluorescent ligands containing different linkers and fluorophores. One of these conjugates, 98, displayed micromolar affinity for hP2Y2R (p Kd = 6.32 ± 0.10, n = 17) in a bioluminescence-energy-transfer (BRET) assay. Confocal microscopy with this ligand revealed displaceable membrane labeling of astrocytoma cells expressing untagged hP2Y2R. These properties make 98 one of the first tools for studying hP2Y2R distribution and organization.


Assuntos
Dibenzocicloeptenos/farmacologia , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Antagonistas do Receptor Purinérgico P2/síntese química , Antagonistas do Receptor Purinérgico P2/farmacologia , Pirimidinonas/farmacologia , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Astrocitoma/metabolismo , Linhagem Celular , Dibenzocicloeptenos/química , Humanos , Ligantes , Microscopia Confocal , Sondas Moleculares , Ligação Proteica , Pirimidinonas/química , Proteínas Recombinantes/química , Relação Estrutura-Atividade
11.
J Med Chem ; 60(4): 1534-1554, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28128944

RESUMO

A novel molecular scaffold has been synthesized, and its incorporation into new analogues of biologically active molecules across multiple target classes will be discussed. In these studies, we have shown use of the tricyclic scaffold to synthesize potent inhibitors of the serine peptidase DPP-4, antagonists of the CCR5 receptor, and highly potent and selective PI3K δ isoform inhibitors. We also describe the predicted physicochemical properties of the resulting inhibitors and conclude that the tractable molecular scaffold could have potential application in future drug discovery programs.


Assuntos
Antagonistas dos Receptores CCR5/química , Antagonistas dos Receptores CCR5/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Dipeptidil Peptidase 4/metabolismo , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Receptores CCR5/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Front Pharmacol ; 8: 908, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321740

RESUMO

Recent advances in fluorescent ligand technology have enabled the study of G protein-coupled receptors in their native environment without the need for genetic modification such as addition of N-terminal fluorescent or bioluminescent tags. Here, we have used a non-imaging plate reader (PHERAstar FS) to monitor the binding of fluorescent ligands to the human adenosine-A3 receptor (A3AR; CA200645 and AV039), stably expressed in CHO-K1 cells. To verify that this method was suitable for the study of other GPCRs, assays at the human adenosine-A1 receptor, and ß1 and ß2 adrenoceptors (ß1AR and ß2AR; BODIPY-TMR-CGP-12177) were also carried out. Affinity values determined for the binding of the fluorescent ligands CA200645 and AV039 to A3AR for a range of classical adenosine receptor antagonists were consistent with A3AR pharmacology and correlated well (R2 = 0.94) with equivalent data obtained using a confocal imaging plate reader (ImageXpress Ultra). The binding of BODIPY-TMR-CGP-12177 to the ß1AR was potently inhibited by low concentrations of the ß1-selective antagonist CGP 20712A (pKi 9.68) but not by the ß2-selective antagonist ICI 118551(pKi 7.40). Furthermore, in experiments conducted in CHO K1 cells expressing the ß2AR this affinity order was reversed with ICI 118551 showing the highest affinity (pKi 8.73) and CGP20712A (pKi 5.68) the lowest affinity. To determine whether the faster data acquisition of the non-imaging plate reader (~3 min per 96-well plate) was suitable for high throughput screening (HTS), we screened the LOPAC library for inhibitors of the binding of CA200645 to the A3AR. From the initial 1,263 compounds evaluated, 67 hits (defined as those that inhibited the total binding of 25 nM CA200645 by ≥40%) were identified. All compounds within the library that had medium to high affinity for the A3AR (pKi ≥6) were successfully identified. We found three novel compounds in the library that displayed unexpected sub-micromolar affinity for the A3AR. These were K114 (pKi 6.43), retinoic acid p-hydroxyanilide (pKi 6.13) and SU 6556 (pKi 6.17). Molecular docking of these latter three LOPAC library members provided a plausible set of binding poses within the vicinity of the established orthosteric A3AR binding pocket. A plate reader based library screening using an untagged receptor is therefore possible using fluorescent ligand opening the possibility of its use in compound screening at natively expressed receptors.

13.
Pharmacol Res Perspect ; 4(5): e00250, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27588207

RESUMO

Previous research has indicated that allosteric interactions across the dimer interface of ß1-adrenoceptors may be responsible for a secondary low affinity binding conformation. Here we have investigated the potential for probe dependence, in the determination of antagonist pKi values at the human ß1-adenoceptor, which may result from such allosterism interactions. Three fluorescent ß1-adrenoceptor ligands were used to investigate this using bioluminescence energy transfer (BRET) between the receptor-bound fluorescent ligand and the N-terminal NanoLuc tag of a human ß1-adrenoceptor expressed in HEK 293 cells (NanoBRET). This proximity assay showed high-affinity-specific binding to the NanoLuc- ß1-adrenoceptor with each of the three fluorescent ligands yielding KD values of 87.1 ± 10 nmol/L (n = 8), 38.1 ± 12 nmol/L (n = 7), 13.4 ± 2 nmol/L (n = 14) for propranolol-Peg8-BY630, propranolol- ß(Ala-Ala)-BY630 and CGP-12177-TMR, respectively. Parallel radioligand-binding studies with 3H-CGP12177 and TIRF microscopy, to monitor NanoLuc bioluminescence, confirmed a high cell surface expression of the NanoLuc- ß1-adrenoceptor in HEK 293 cells (circa 1500 fmol.mg protein-1). Following a 1 h incubation with fluorescent ligands and ß1-adrenoceptor competing antagonists, there were significant differences (P < 0.001) in the pKi values obtained for CGP20712a and CGP 12177 with the different fluorescent ligands and 3H-CGP 12177. However, increasing the incubation time to 2 h removed these significant differences. The data obtained show that the NanoBRET assay can be applied successfully to study ligand-receptor interactions at the human ß1-adrenoceptor. However, the study also emphasizes the importance of ensuring that both the fluorescent and competing ligands are in true equilibrium before interpretations regarding probe dependence can be made.

14.
J Med Chem ; 58(24): 9578-90, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26592528

RESUMO

Fragment-based lead discovery (FBLD) holds great promise for drug discovery, but applications to G protein-coupled receptors (GPCRs) have been limited by a lack of sensitive screening techniques and scarce structural information. If virtual screening against homology models of GPCRs could be used to identify fragment ligands, FBLD could be extended to numerous important drug targets and contribute to efficient lead generation. Access to models of multiple receptors may further enable the discovery of fragments that bind specifically to the desired target. To investigate these questions, we used molecular docking to screen >500 000 fragments against homology models of the A3 and A1 adenosine receptors (ARs) with the goal to discover A3AR-selective ligands. Twenty-one fragments with predicted A3AR-specific binding were evaluated in live-cell fluorescence-based assays; of eight verified ligands, six displayed A3/A1 selectivity, and three of these had high affinities ranging from 0.1 to 1.3 µM. Subsequently, structure-guided fragment-to-lead optimization led to the identification of a >100-fold-selective antagonist with nanomolar affinity from commercial libraries. These results highlight that molecular docking screening can guide fragment-based discovery of selective ligands even if the structures of both the target and antitarget receptors are unknown. The same approach can be readily extended to a large number of pharmaceutically important targets.


Assuntos
Antagonistas do Receptor A3 de Adenosina/química , Pirimidinonas/química , Receptor A3 de Adenosina/química , Tiazóis/química , Tiofenos/química , Antagonistas do Receptor A1 de Adenosina/química , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Ligação Competitiva , Células CHO , Simulação por Computador , Cricetulus , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Simulação de Acoplamento Molecular , Pirimidinonas/farmacologia , Receptor A1 de Adenosina/química , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiofenos/farmacologia
15.
Neuropharmacology ; 98: 68-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25937210

RESUMO

Fluorescence based probes provide a novel way to study the dynamic internalization process of G protein-coupled receptors (GPCRs). Recent advances in the rational design of fluorescent ligands for GPCRs have been used here to generate new fluorescent agonists containing tripeptide linkers for the adenosine A3 receptor. The fluorescent agonist BY630-X-(D)-A-(D)-A-G-ABEA was found to be a highly potent agonist at the adenosine A3 receptor in both reporter gene (pEC50 = 8.48 ± 0.09) and internalization assays (pEC50 = 7.47 ± 0.11). Confocal imaging studies showed that BY630-X-(D)-A-(D)-A-G-ABEA was internalized with A3 linked to yellow fluorescent protein, which was blocked by the competitive antagonist MRS1220. Internalization of untagged adenosine A3 could also be visualized with BY630-X-(D)-A-(D)-A-G-ABEA treatment. Further, BY630-X-(D)-A-(D)-A-G-ABEA stimulated the formation of receptor-arrestin3 complexes and was found to localize with these intracellular complexes. This highly potent agonist with excellent imaging properties should be a valuable tool to study receptor internalization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.


Assuntos
Arrestinas/metabolismo , Corantes Fluorescentes/química , Receptor A3 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Arrestinas/genética , Compostos de Boro/farmacologia , Células CHO , Colforsina/farmacologia , Cricetulus , Relação Dose-Resposta a Droga , Corantes Fluorescentes/farmacocinética , Expressão Gênica/efeitos dos fármacos , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Estrutura Molecular , Transporte Proteico/fisiologia , Receptor A3 de Adenosina/genética , Fatores de Tempo , Transfecção
16.
Br J Pharmacol ; 171(16): 3827-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24750014

RESUMO

BACKGROUND AND PURPOSE: The highly conserved tryptophan (W6.48) in transmembrane domain 6 of GPCRs has been shown to play a central role in forming an active conformation in response to agonist binding. We set out to characterize the effect of this mutation on the efficacy of two agonists at multiple signalling pathways downstream of the adenosine A3 receptor. EXPERIMENTAL APPROACH: Residue W6.48 in the human adenosine A3 receptor fused to yellow fluorescent protein was mutated to phenylalanine and expressed in CHO-K1 cells containing a cAMP response element reporter gene. The effects on agonist-mediated receptor internalization were monitored by automated confocal microscopy and image analysis. Further experiments were carried out to investigate agonist-mediated ERK1/2 phosphorylation, inhibition of [(3)H]-cAMP accumulation and ß-arrestin2 binding. KEY RESULTS: NECA was able to stimulate agonist-mediated internalization of the W6.48F mutant receptor, while the agonist HEMADO was inactive. Investigation of other downstream signalling pathways indicated that G-protein coupling was impaired for both agonists tested. Mutation of W6.48F therefore resulted in differential effects on agonist efficacy, and introduced signalling pathway bias for HEMADO at the adenosine A3 receptor. CONCLUSIONS AND IMPLICATIONS: Investigation of the pharmacology of the W6.48F mutant of the adenosine A3 receptor confirms that this region is important in forming the active conformation of the receptor for stimulating a number of different signalling pathways and that mutations in this residue can lead to changes in agonist efficacy and signalling bias.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Arrestinas/metabolismo , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação , Estrutura Terciária de Proteína , Transdução de Sinais , beta-Arrestinas
17.
Org Biomol Chem ; 11(34): 5673-82, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23881285

RESUMO

Advances in fluorescence-based imaging technologies have helped propel the study of real-time biological readouts and analysis across many different areas. In particular the use of fluorescent ligands as chemical tools to study proteins such as G protein-coupled receptors (GPCRs) has received ongoing interest. Methods to improve the efficient chemical synthesis of fluorescent ligands remain of paramount importance to ensure this area of bioanalysis continues to advance. Here we report conversion of the non-selective GPCR adenosine receptor antagonist Xanthine Amine Congener into higher affinity and more receptor subtype-selective fluorescent antagonists. This was achieved through insertion and optimisation of a dipeptide linker between the adenosine receptor pharmacophore and the fluorophore. Fluorescent probe 27 containing BODIPY 630/650 (pK(D) = 9.12 ± 0.05 [hA3AR]), and BODIPY FL-containing 28 (pK(D) = 7.96 ± 0.09 [hA3AR]) demonstrated clear, displaceable membrane binding using fluorescent confocal microscopy. From in silico analysis of the docked ligand-receptor complexes of 27, we suggest regions of molecular interaction that could account for the observed selectivity of these peptide-linker based fluorescent conjugates. This general approach of converting a non-selective ligand to a selective biological tool could be applied to other ligands of interest.


Assuntos
Corantes Fluorescentes/química , Peptídeos/química , Antagonistas de Receptores Purinérgicos P1/química , Animais , Células CHO , Cricetulus , Corantes Fluorescentes/síntese química , Humanos , Modelos Moleculares , Estrutura Molecular
18.
Chem Biol ; 19(9): 1105-15, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22999879

RESUMO

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane proteins. For GPCR drug discovery, it is important that ligand affinity is determined in the correct cellular environment and preferably using an unmodified receptor. We developed a live cell high-content screening assay that uses a fluorescent antagonist, CA200645, to determine binding affinity constants of competing ligands at human adenosine-A(1) and -A(3) receptors. This method was validated as a tool to screen a library of low molecular weight fragments, and identified a hit with submicromolar binding affinity (K(D)). This fragment was structurally unrelated to substructures of known adenosine receptor antagonists and was optimized to show selectivity for the adenosine-A(3) receptor. This technology represents a significant advance that will allow the determination of ligand and fragment affinities at receptors in their native membrane environment.


Assuntos
Fluorescência , Medições Luminescentes/métodos , Receptor A3 de Adenosina/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Células CHO , Sobrevivência Celular , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Ligantes , Microscopia Confocal , Estrutura Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
19.
J Med Chem ; 55(4): 1771-82, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22277057

RESUMO

The adenosine-A(3) receptor (A(3)AR) is a G protein-coupled receptor that shows promise as a therapeutic target for cancer, glaucoma, and various autoimmune inflammatory disorders, and as such, there is a need for molecular probes to study this receptor. Here, we report a series of fluorescent ligands containing different linkers and fluorophores based around a 1,2,4-triazolo[4,3-a]quinoxalin-1-one antagonist. One of these conjugates (19) displayed high affinity for the A(3)AR (pK(D) = 9.36 ± 0.12) and is >650-fold selective over other adenosine receptor subtypes. Confocal microscopy revealed clear, displaceable membrane labeling of CHO-A(3) cells with 19, with no detectable labeling of CHO-A(1) cells under identical conditions. This fluorescent ligand was also able to specifically label the A(3)AR in HEK293T cells containing a mixed adenosine receptor population. The subtype specificity, along with its excellent imaging properties, make 19 an ideal tool for studying A(3)AR distribution and organization, particularly in the presence of other adenosine receptor subtypes.


Assuntos
Antagonistas do Receptor A3 de Adenosina/síntese química , Compostos de Boro/síntese química , Corantes Fluorescentes/síntese química , Quinoxalinas/síntese química , Triazóis/síntese química , Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Compostos de Boro/química , Compostos de Boro/farmacologia , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Quinoxalinas/química , Quinoxalinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
20.
FASEB J ; 25(10): 3465-76, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21715680

RESUMO

A growing awareness indicates that many G-protein-coupled receptors (GPCRs) exist as homodimers, but the extent of the cooperativity across the dimer interface has been largely unexplored. Here, measurement of the dissociation kinetics of a fluorescent agonist (ABA-X-BY630) from the human A(1) or A(3) adenosine receptors expressed in CHO-K1 cells has provided evidence for highly cooperative interactions between protomers of the A(3)-receptor dimer in single living cells. In the absence of competitive ligands, the dissociation rate constants of ABA-X-BY630 from A(1) and A(3) receptors were 1.45 ± 0.05 and 0.57 ± 0.07 min(-1), respectively. At the A(3) receptor, this could be markedly increased by both orthosteric agonists and antagonists [15-, 9-, and 19-fold for xanthine amine congener (XAC), 5'-(N-ethyl carboxamido)adenosine (NECA), and adenosine, respectively] and reduced by coexpression of a nonbinding (N250A) A(3)-receptor mutant. The changes in ABA-X-BY630 dissociation were much lower at the A(1) receptor (1.5-, 1.4-, and 1.5-fold). Analysis of the pEC(50) values of XAC, NECA, and adenosine for the ABA-X-BY630-occupied A(3)-receptor dimer yielded values of 6.0 ± 0.1, 5.9 ± 0.1, and 5.2 ± 0.1, respectively. This study provides new insight into the spatial and temporal specificity of drug action that can be provided by allosteric modulation across a GPCR homodimeric interface.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptor A3 de Adenosina/metabolismo , Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Humanos , Cinética , Ligação Proteica , Receptor A3 de Adenosina/química , Xantinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA