Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
J Imaging Inform Med ; 37(3): 1137-1150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332404

RESUMO

In recent years, deep learning (DL) has been used extensively and successfully to diagnose different cancers in dermoscopic images. However, most approaches lack clinical inputs supported by dermatologists that could aid in higher accuracy and explainability. To dermatologists, the presence of telangiectasia, or narrow blood vessels that typically appear serpiginous or arborizing, is a critical indicator of basal cell carcinoma (BCC). Exploiting the feature information present in telangiectasia through a combination of DL-based techniques could create a pathway for both, improving DL results as well as aiding dermatologists in BCC diagnosis. This study demonstrates a novel "fusion" technique for BCC vs non-BCC classification using ensemble learning on a combination of (a) handcrafted features from semantically segmented telangiectasia (U-Net-based) and (b) deep learning features generated from whole lesion images (EfficientNet-B5-based). This fusion method achieves a binary classification accuracy of 97.2%, with a 1.3% improvement over the corresponding DL-only model, on a holdout test set of 395 images. An increase of 3.7% in sensitivity, 1.5% in specificity, and 1.5% in precision along with an AUC of 0.99 was also achieved. Metric improvements were demonstrated in three stages: (1) the addition of handcrafted telangiectasia features to deep learning features, (2) including areas near telangiectasia (surround areas), (3) discarding the noisy lower-importance features through feature importance. Another novel approach to feature finding with weak annotations through the examination of the surrounding areas of telangiectasia is offered in this study. The experimental results show state-of-the-art accuracy and precision in the diagnosis of BCC, compared to three benchmark techniques. Further exploration of deep learning techniques for individual dermoscopy feature detection is warranted.


Assuntos
Carcinoma Basocelular , Aprendizado Profundo , Neoplasias Cutâneas , Telangiectasia , Humanos , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Telangiectasia/diagnóstico por imagem , Telangiectasia/patologia , Telangiectasia/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Dermoscopia/métodos , Sensibilidade e Especificidade
3.
J Imaging Inform Med ; 37(1): 92-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343238

RESUMO

A critical clinical indicator for basal cell carcinoma (BCC) is the presence of telangiectasia (narrow, arborizing blood vessels) within the skin lesions. Many skin cancer imaging processes today exploit deep learning (DL) models for diagnosis, segmentation of features, and feature analysis. To extend automated diagnosis, recent computational intelligence research has also explored the field of Topological Data Analysis (TDA), a branch of mathematics that uses topology to extract meaningful information from highly complex data. This study combines TDA and DL with ensemble learning to create a hybrid TDA-DL BCC diagnostic model. Persistence homology (a TDA technique) is implemented to extract topological features from automatically segmented telangiectasia as well as skin lesions, and DL features are generated by fine-tuning a pre-trained EfficientNet-B5 model. The final hybrid TDA-DL model achieves state-of-the-art accuracy of 97.4% and an AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. This study demonstrates that telangiectasia features improve BCC diagnosis, and TDA techniques hold the potential to improve DL performance.

4.
Cancers (Basel) ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36831599

RESUMO

Deep learning has achieved significant success in malignant melanoma diagnosis. These diagnostic models are undergoing a transition into clinical use. However, with melanoma diagnostic accuracy in the range of ninety percent, a significant minority of melanomas are missed by deep learning. Many of the melanomas missed have irregular pigment networks visible using dermoscopy. This research presents an annotated irregular network database and develops a classification pipeline that fuses deep learning image-level results with conventional hand-crafted features from irregular pigment networks. We identified and annotated 487 unique dermoscopic melanoma lesions from images in the ISIC 2019 dermoscopic dataset to create a ground-truth irregular pigment network dataset. We trained multiple transfer learned segmentation models to detect irregular networks in this training set. A separate, mutually exclusive subset of the International Skin Imaging Collaboration (ISIC) 2019 dataset with 500 melanomas and 500 benign lesions was used for training and testing deep learning models for the binary classification of melanoma versus benign. The best segmentation model, U-Net++, generated irregular network masks on the 1000-image dataset. Other classical color, texture, and shape features were calculated for the irregular network areas. We achieved an increase in the recall of melanoma versus benign of 11% and in accuracy of 2% over DL-only models using conventional classifiers in a sequential pipeline based on the cascade generalization framework, with the highest increase in recall accompanying the use of the random forest algorithm. The proposed approach facilitates leveraging the strengths of both deep learning and conventional image processing techniques to improve the accuracy of melanoma diagnosis. Further research combining deep learning with conventional image processing on automatically detected dermoscopic features is warranted.

5.
J Digit Imaging ; 36(2): 526-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385676

RESUMO

Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes and evaluated it using the publicly available HAM10000 (ISIC2018 Task 3) skin lesion dataset. Our test results show that the largest image size (448 × 448) gave the highest accuracy of 98.23 and Jaccard index of 0.65 on the HAM10000 (ISIC 2018 Task 3) skin lesion dataset, exhibiting better performance than for two well-known deep learning approaches, U-Net and ResUNet-a. We found the Dice loss function to give the best results for all measures. Further evaluated on 25 additional test images, the technique yields state-of-the-art accuracy compared to 8 previously reported classical techniques. We conclude that the proposed ChimeraNet architecture may enable improved detection of fine image structures. Further application of DL techniques to detect dermoscopy structures is warranted.


Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Redes Neurais de Computação , Algoritmos , Dermoscopia/métodos , Cabelo/diagnóstico por imagem , Cabelo/patologia , Processamento de Imagem Assistida por Computador/métodos
6.
J Pathol Inform ; 12: 26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447606

RESUMO

BACKGROUND: Cervical intraepithelial neoplasia (CIN) is regarded as a potential precancerous state of the uterine cervix. Timely and appropriate early treatment of CIN can help reduce cervical cancer mortality. Accurate estimation of CIN grade correlated with human papillomavirus type, which is the primary cause of the disease, helps determine the patient's risk for developing the disease. Colposcopy is used to select women for biopsy. Expert pathologists examine the biopsied cervical epithelial tissue under a microscope. The examination can take a long time and is prone to error and often results in high inter-and intra-observer variability in outcomes. METHODOLOGY: We propose a novel image analysis toolbox that can automate CIN diagnosis using whole slide image (digitized biopsies) of cervical tissue samples. The toolbox is built as a four-step deep learning model that detects the epithelium regions, segments the detected epithelial portions, analyzes local vertical segment regions, and finally classifies each epithelium block with localized attention. We propose an epithelium detection network in this study and make use of our earlier research on epithelium segmentation and CIN classification to complete the design of the end-to-end CIN diagnosis toolbox. RESULTS: The results show that automated epithelium detection and segmentation for CIN classification yields comparable results to manually segmented epithelium CIN classification. CONCLUSION: This highlights the potential as a tool for automated digitized histology slide image analysis to assist expert pathologists.

7.
J Pathol Inform ; 11: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477616

RESUMO

BACKGROUND: Automated pathology techniques for detecting cervical cancer at the premalignant stage have advantages for women in areas with limited medical resources. METHODS: This article presents EpithNet, a deep learning approach for the critical step of automated epithelium segmentation in digitized cervical histology images. EpithNet employs three regression networks of varying dimensions of image input blocks (patches) surrounding a given pixel, with all blocks at a fixed resolution, using varying network depth. RESULTS: The proposed model was evaluated on 311 digitized histology epithelial images and the results indicate that the technique maximizes region-based information to improve pixel-wise probability estimates. EpithNet-mc model, formed by intermediate concatenation of the convolutional layers of the three models, was observed to achieve 94% Jaccard index (intersection over union) which is 26.4% higher than the benchmark model. CONCLUSIONS: EpithNet yields better epithelial segmentation results than state-of-the-art benchmark methods.

8.
J Pathol Inform ; 11: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33828898

RESUMO

BACKGROUND: Cervical cancer is one of the deadliest cancers affecting women globally. Cervical intraepithelial neoplasia (CIN) assessment using histopathological examination of cervical biopsy slides is subject to interobserver variability. Automated processing of digitized histopathology slides has the potential for more accurate classification for CIN grades from normal to increasing grades of pre-malignancy: CIN1, CIN2, and CIN3. METHODOLOGY: Cervix disease is generally understood to progress from the bottom (basement membrane) to the top of the epithelium. To model this relationship of disease severity to spatial distribution of abnormalities, we propose a network pipeline, DeepCIN, to analyze high-resolution epithelium images (manually extracted from whole-slide images) hierarchically by focusing on localized vertical regions and fusing this local information for determining Normal/CIN classification. The pipeline contains two classifier networks: (1) a cross-sectional, vertical segment-level sequence generator is trained using weak supervision to generate feature sequences from the vertical segments to preserve the bottom-to-top feature relationships in the epithelium image data and (2) an attention-based fusion network image-level classifier predicting the final CIN grade by merging vertical segment sequences. RESULTS: The model produces the CIN classification results and also determines the vertical segment contributions to CIN grade prediction. CONCLUSION: Experiments show that DeepCIN achieves pathologist-level CIN classification accuracy.

9.
J Drugs Dermatol ; 18(12): 1282-1283, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860220

RESUMO

The diagnosis of pyoderma gangrenosum (PG) is often difficult to establish based on a clinical presentation, which can mimic other dermatologic conditions. The formation of a mnemonic that incorporates the most prevalent clinical features of PG could aid in accuracy and speed of diagnosis. The 5 P's of PG: Painful, Progressive, Purple, Pretibial, Pathergy, and systemic associations, incorporate parameters recognizable on the first encounter with a patient with PG without reliance on histopathology and laboratory findings or treatment response. We postulate that this simple mnemonic will have the most utility with non-dermatology clinicians encountering a lesion suspicious for PG. By assisting in differential diagnosis formation, this mnemonic may lead to timelier biopsies and treatment initiation. The limitations of this approach mirror those of other studies and include lower sensitivities in patients with an atypical PG presentation. In conclusion, the 5 P's of PG offer a useful mnemonic for the diagnosis of PG, particularly in the initial clinical diagnosis prior to skin biopsy and treatment. J Drugs Dermatol. 2019;18(12):1282-1283.


Assuntos
Pioderma Gangrenoso/diagnóstico , Dermatopatias/diagnóstico , Biópsia/métodos , Diagnóstico Diferencial , Humanos , Pioderma Gangrenoso/fisiopatologia , Dermatopatias/fisiopatologia
10.
Skin Res Technol ; 25(4): 544-552, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30868667

RESUMO

PURPOSE: We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions. METHODS: We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a "good-enough" border basis. Morphology and color features inside and outside the automatic border are used to build the model. RESULTS: For a random forests classifier applied to an 802-lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases. CONCLUSION: The performance of the classifier-based automatic skin lesion finder is found to be better than any single algorithm used in this research.


Assuntos
Dermoscopia/métodos , Melanoma/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Algoritmos , Cor , Dermoscopia/classificação , Diagnóstico por Computador , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador/instrumentação , Melanoma/patologia , Pele/patologia , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/patologia
11.
IEEE J Biomed Health Inform ; 23(4): 1385-1391, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30624234

RESUMO

This paper presents an approach that combines conventional image processing with deep learning by fusing the features from the individual techniques. We hypothesize that the two techniques, with different error profiles, are synergistic. The conventional image processing arm uses three handcrafted biologically inspired image processing modules and one clinical information module. The image processing modules detect lesion features comparable to clinical dermoscopy information-atypical pigment network, color distribution, and blood vessels. The clinical module includes information submitted to the pathologist-patient age, gender, lesion location, size, and patient history. The deep learning arm utilizes knowledge transfer via a ResNet-50 network that is repurposed to predict the probability of melanoma classification. The classification scores of each individual module from both processing arms are then ensembled utilizing logistic regression to predict an overall melanoma probability. Using cross-validated results of melanoma classification measured by area under the receiver operator characteristic curve (AUC), classification accuracy of 0.94 was obtained for the fusion technique. In comparison, the ResNet-50 deep learning based classifier alone yields an AUC of 0.87 and conventional image processing based classifier yields an AUC of 0.90. Further study of fusion of conventional image processing techniques and deep learning is warranted.


Assuntos
Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico por imagem , Algoritmos , Área Sob a Curva , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Pele/diagnóstico por imagem
12.
IEEE J Biomed Health Inform ; 23(2): 570-577, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29993590

RESUMO

This paper presents a QuadTree-based melanoma detection system inspired by dermatologists' color perception. Clinical color assessment in dermoscopy images is challenging because of subtle differences in shades, location-dependent color information, poor color contrast, and wide variation among images of the same class. To overcome these challenges, color enhancement and automatic color identification techniques, based on QuadTree segmentation and modeled after expert color assessments, are developed. The approach presented in this paper is shown to provide an accurate model of expert color assessment. Specifically, the proposed model is shown to: 1) identify significantly more colors in melanomas than in benign skin lesions; 2) identify a higher frequency in melanomas of three colors: blue-gray, black, and pink; and 3) delineate locations of melanoma colors by quintiles, specifically predilection for blue-gray and pink in the periphery and a trend for white and black in the lesion center. Performance of the proposed method is evaluated using four classifiers. The kernel support vector machine classifier is found to achieve the best results, with an area under the receiver operating characteristic (ROC) curve of 0.93, compared to average area under the ROC curve of 0.82 achieved by the dermatologists in this study. The results indicate that the biologically inspired method of automatic color detection proposed in this paper has the potential to play an important role in melanoma diagnosis in the clinic.


Assuntos
Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Algoritmos , Cor , Humanos , Melanoma/patologia , Pele/diagnóstico por imagem , Pele/patologia , Neoplasias Cutâneas/patologia , Pigmentação da Pele/fisiologia
13.
J Pathol Inform ; 9: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619277

RESUMO

BACKGROUND: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. METHODS: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. RESULTS: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. CONCLUSIONS: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.

15.
J Am Acad Dermatol ; 74(6): 1093-106, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26896294

RESUMO

BACKGROUND: Evolving dermoscopic terminology motivated us to initiate a new consensus. OBJECTIVE: We sought to establish a dictionary of standardized terms. METHODS: We reviewed the medical literature, conducted a survey, and convened a discussion among experts. RESULTS: Two competitive terminologies exist, a more metaphoric terminology that includes numerous terms and a descriptive terminology based on 5 basic terms. In a survey among members of the International Society of Dermoscopy (IDS) 23.5% (n = 201) participants preferentially use descriptive terminology, 20.1% (n = 172) use metaphoric terminology, and 484 (56.5%) use both. More participants who had been initially trained by metaphoric terminology prefer using descriptive terminology than vice versa (9.7% vs 2.6%, P < .001). Most new terms that were published since the last consensus conference in 2003 were unknown to the majority of the participants. There was uniform consensus that both terminologies are suitable, that metaphoric terms need definitions, that synonyms should be avoided, and that the creation of new metaphoric terms should be discouraged. The expert panel proposed a dictionary of standardized terms taking account of metaphoric and descriptive terms. LIMITATIONS: A consensus seeks a workable compromise but does not guarantee its implementation. CONCLUSION: The new consensus provides a revised framework of standardized terms to enhance the consistent use of dermoscopic terminology.


Assuntos
Dermatologia/normas , Dermoscopia/normas , Dermatopatias/diagnóstico , Terminologia como Assunto , Congressos como Assunto , Consenso , Feminino , Humanos , Internacionalidade , Masculino , Sociedades Médicas/normas
16.
J Pathol Inform ; 7: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28163974

RESUMO

BACKGROUND: In previous research, we introduced an automated, localized, fusion-based approach for classifying uterine cervix squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on digitized histology image analysis. As part of the CIN assessment process, acellular and atypical cell concentration features were computed from vertical segment partitions of the epithelium region to quantize the relative distribution of nuclei. METHODS: Feature data was extracted from 610 individual segments from 61 images for epithelium classification into categories of Normal, CIN1, CIN2, and CIN3. The classification results were compared against CIN labels obtained from two pathologists who visually assessed abnormality in the digitized histology images. In this study, individual vertical segment CIN classification accuracy improvement is reported using the logistic regression classifier for an expanded data set of 118 histology images. RESULTS: We analyzed the effects on classification using the same pathologist labels for training and testing versus using one pathologist labels for training and the other for testing. Based on a leave-one-out approach for classifier training and testing, exact grade CIN accuracies of 81.29% and 88.98% were achieved for individual vertical segment and epithelium whole-image classification, respectively. CONCLUSIONS: The Logistic and Random Tree classifiers outperformed the benchmark SVM and LDA classifiers from previous research. The Logistic Regression classifier yielded an improvement of 10.17% in CIN Exact grade classification results based on CIN labels for training-testing for the individual vertical segments and the whole image from the same single expert over the baseline approach using the reduced features. Overall, the CIN classification rates tended to be higher using the training-testing labels for the same expert than for training labels from one expert and testing labels from the other expert. The Exact class fusion- based CIN discrimination results obtained in this study are similar to the Exact class expert agreement rate.

17.
IEEE J Biomed Health Inform ; 20(6): 1595-1607, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26529792

RESUMO

Cervical cancer, which has been affecting women worldwide as the second most common cancer, can be cured if detected early and treated well. Routinely, expert pathologists visually examine histology slides for cervix tissue abnormality assessment. In previous research, we investigated an automated, localized, fusion-based approach for classifying squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on image analysis of 61 digitized histology images. This paper introduces novel acellular and atypical cell concentration features computed from vertical segment partitions of the epithelium region within digitized histology images to quantize the relative increase in nuclei numbers as the CIN grade increases. Based on the CIN grade assessments from two expert pathologists, image-based epithelium classification is investigated with voting fusion of vertical segments using support vector machine and linear discriminant analysis approaches. Leave-one-out is used for the training and testing for CIN classification, achieving an exact grade labeling accuracy as high as 88.5%.


Assuntos
Núcleo Celular/patologia , Interpretação de Imagem Assistida por Computador/métodos , Displasia do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/diagnóstico por imagem , Algoritmos , Análise Discriminante , Feminino , Histocitoquímica , Humanos , Máquina de Vetores de Suporte
18.
Comput Med Imaging Graph ; 38(5): 403-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786720

RESUMO

Fuzzy logic image analysis techniques were used to analyze three shades of blue (lavender blue, light blue, and dark blue) in dermoscopic images for melanoma detection. A logistic regression model provided up to 82.7% accuracy for melanoma discrimination for 866 images. With a support vector machines (SVM) classifier, lower accuracy was obtained for individual shades (79.9-80.1%) compared with up to 81.4% accuracy with multiple shades. All fuzzy blue logic alpha cuts scored higher than the crisp case. Fuzzy logic techniques applied to multiple shades of blue can assist in melanoma detection. These vector-based fuzzy logic techniques can be extended to other image analysis problems involving multiple colors or color shades.


Assuntos
Cor , Lógica Fuzzy , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico , Nevo Azul/diagnóstico , Neoplasias Cutâneas/diagnóstico , Humanos , Pigmentação
19.
J Skin Cancer ; 2014: 719740, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24639898

RESUMO

Background. In dermoscopic images, multiple shades of pink have been described in melanoma without specifying location of these areas within the lesion. Objective. The purpose of this study was to determine the statistics for the presence of centrally and peripherally located pink melanoma and benign melanocytic lesions. Methods. Three observers, untrained in dermoscopy, each retrospectively analyzed 1290 dermoscopic images (296 melanomas (170 in situ and 126 invasive), 994 benign melanocytic nevi) and assessed the presence of any shade of pink in the center and periphery of the lesion. Results. Pink was located in the peripheral region in 14.5% of melanomas and 6.3% of benign melanocytic lesions, yielding an odds ratio of 2.51 (95% CI: 1.7-3.8, P < 0.0001). Central pink was located in 12.8% of melanomas and 21.8% of benign lesions, yielding an odds ratio of 0.462 (95% CI: 0.67, P = 0.204). Pink in melanoma in situ tended to be present throughout the lesion (68% of pink lesions). Pink in invasive melanoma was present in 17% of cases, often presenting as a pink rim. Conclusions. The presence of pink in the periphery or rim of a dermoscopic melanocytic lesion image provides an indication of malignancy. We offer the "pink rim sign" as a clue to the dermoscopic diagnosis of invasive melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA