Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823551

RESUMO

The splicing factor SF3B1 is recurrently mutated in various tumors, including pancreatic ductal adenocarcinoma (PDAC). The impact of the hotspot mutation SF3B1K700E on the PDAC pathogenesis, however, remains elusive. Here, we demonstrate that Sf3b1K700E alone is insufficient to induce malignant transformation of the murine pancreas, but that it increases aggressiveness of PDAC if it co-occurs with mutated KRAS and p53. We further show that Sf3b1K700E already plays a role during early stages of pancreatic tumor progression and reduces the expression of TGF-ß1-responsive epithelial-mesenchymal transition (EMT) genes. Moreover, we found that SF3B1K700E confers resistance to TGF-ß1-induced cell death in pancreatic organoids and cell lines, partly mediated through aberrant splicing of Map3k7. Overall, our findings demonstrate that SF3B1K700E acts as an oncogenic driver in PDAC, and suggest that it promotes the progression of early stage tumors by impeding the cellular response to tumor suppressive effects of TGF-ß.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Mutação , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/patologia , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Pancreáticas
2.
iScience ; 26(8): 107368, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559908

RESUMO

Although dietary fructose is associated with an elevated risk for pancreatic cancer, the underlying mechanisms remain elusive. Here, we report that ketohexokinase (KHK), the rate-limiting enzyme of fructose metabolism, is a driver of PDAC development. We demonstrate that fructose triggers KHK and induces fructolytic gene expression in mouse and human PDAC. Genetic inactivation of KhkC enhances the survival of KPC-driven PDAC even in the absence of high fructose diet. Furthermore, it decreases the viability, migratory capability, and growth of KPC cells in a cell autonomous manner. Mechanistically, we demonstrate that genetic ablation of KHKC strongly impairs the activation of KRAS-MAPK pathway and of rpS6, a downstream target of mTORC signaling. Moreover, overexpression of KHKC in KPC cells enhances the downstream KRAS pathway and cell viability. Our data provide new insights into the role of KHK in PDAC progression and imply that inhibiting KHK could have profound implications for pancreatic cancer therapy.

3.
Sci Total Environ ; 879: 163138, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37001654

RESUMO

The primary goal of paleoflood hydrology is to estimate the frequency and magnitude of past floods. Botanical evidence, and particularly scars on trees, has been used repeatedly as paleostage indicators to reconstruct peak discharges and flood height. Yet, these reconstructions depend on the presence of visible scars on tree stems which tend to be masked as trees grow older. Here, we estimated flood magnitude using an alternative approach based on growth disturbances in tree-ring series, tree positions and the minimal discharge necessary to submerge the root collar of a tree as estimated by hydraulic modeling. We tested the reliability of this newly developed approach by using the traditional scar-based reconstruction as a benchmark. To this end, we sampled 60 trees showing evidence of flood damage on their stems along a 787-m long segment of the Asco river (Corsica, France). Based on 440 growth disturbances dated in tree-ring series, we reconstructed 28 floods between 1759 and 2020 and 18 during the 20th century. Using the two-dimensional Iber hydraulic model and detailed topographic data of the study site obtained from UAV imagery, we estimated that peak discharges of the 28 reconstructed events ranged between 10 and 210 m3s-1, with 200 m3s-1 being considered as the threshold for extreme floods. Not only do the scar-based and root collar submersion approaches yield similar results, findings are also clearly in line with the sparse information available from historical archives and short gauge station records on past floods. The unprecedented length and depth of the record presented here opens new avenues for climate change and flood impact research.

4.
Angew Chem Int Ed Engl ; 62(19): e202213703, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617502

RESUMO

Reactive oxygen species (ROS) are critical for many cellular functions, and dysregulation of ROS involves the development of multiple types of tumors, including pancreatic cancer. However, ROS have been grouped into a single biochemical entity for a long time, and the specific roles of certain types of ROS in tumor cells (e.g., pancreatic ductal adenocarcinoma (PDAC)) have not been systematically investigated. In this work, a highly sensitive and accurate mass spectrometry-based method was applied to study PDAC cells of humans and of genetically modified animals. The results show that the oncogenic KRAS mutation promotes the accumulation of hydrogen peroxide (H2 O2 ) rather than superoxide or hydroxyl radicals in pancreatic cancer cells. We further identified that the enriched H2 O2 modifies cellular metabolites and promotes the survival of pancreatic cancer cells. These findings highlight the specific roles of H2 O2 in pancreatic cancer development, which may provide new directions for pancreatic cancer therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Espectrometria de Massas , Neoplasias Pancreáticas
5.
Mol Metab ; 67: 101650, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470401

RESUMO

OBJECTIVE: Beta cell dysfunction and death are critical steps in the development of both type 1 and type 2 diabetes (T1D and T2D), but the underlying mechanisms are incompletely understood. Activation of the essential tumor suppressor and transcription factor P53 (also known as TP53 and Trp53 in mice) was linked to beta cell death in vitro and has been reported in several diabetes mouse models and beta cells of humans with T2D. In this article, we set out to determine the beta cell specific role of P53 in beta cell dysfunction, cell death and development of diabetes in vivo. METHODS: We generated beta cell specific P53 knockout (P53BKO) mice and used complementary genetic, dietary and pharmacological models of glucose intolerance, beta cell dysfunction and diabetes development to evaluate the functional role of P53 selectively in beta cells. We further analyzed the effect of P53 ablation on beta cell survival in isolated pancreatic islets exposed to diabetogenic stress inducers ex vivo by flow cytometry. RESULTS: Beta cell specific ablation of P53/Trp53 failed to ameliorate glucose tolerance, insulin secretion or to increase beta cell numbers in genetic, dietary and pharmacological models of diabetes. Additionally, loss of P53 in beta cells did not protect against streptozotocin (STZ) induced hyperglycemia and beta cell death, although STZ-induced activation of classical pro-apoptotic P53 target genes was significantly reduced in P53BKO mice. In contrast, Olaparib mediated PARP1 inhibition protected against acute ex vivo STZ-induced beta cell death and islet destruction. CONCLUSIONS: Our study reveals that ablation of P53 specifically in beta cells is unexpectedly unable to attenuate beta cell failure and death in vivo and ex vivo. While during development and progression of diabetes, P53 and P53-regulated pathways are activated, our study suggests that P53 signaling is not essential for loss of beta cells or beta cell dysfunction. P53 in other cell types and organs may predominantly regulate systemic glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucose/metabolismo
6.
Cell Rep ; 40(8): 111266, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001976

RESUMO

Mutations in the splicing factor SF3B1 are frequently occurring in various cancers and drive tumor progression through the activation of cryptic splice sites in multiple genes. Recent studies also demonstrate a positive correlation between the expression levels of wild-type SF3B1 and tumor malignancy. Here, we demonstrate that SF3B1 is a hypoxia-inducible factor (HIF)-1 target gene that positively regulates HIF1 pathway activity. By physically interacting with HIF1α, SF3B1 facilitates binding of the HIF1 complex to hypoxia response elements (HREs) to activate target gene expression. To further validate the relevance of this mechanism for tumor progression, we show that a reduction in SF3B1 levels via monoallelic deletion of Sf3b1 impedes tumor formation and progression via impaired HIF signaling in a mouse model for pancreatic cancer. Our work uncovers an essential role of SF3B1 in HIF1 signaling, thereby providing a potential explanation for the link between high SF3B1 expression and aggressiveness of solid tumors.


Assuntos
Neoplasias Pancreáticas , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neoplasias Pancreáticas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Neoplasias Pancreáticas
7.
Nat Commun ; 13(1): 107, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013237

RESUMO

Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Classe II de Fosfatidilinositol 3-Quinases/genética , Diabetes Mellitus Tipo 2/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Longevidade/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Glicemia/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/efeitos dos fármacos , Metilação , Camundongos , Papaverina/farmacologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vorinostat/farmacologia
8.
Gastroenterology ; 162(1): 269-284, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547282

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood. METHODS: The Ptf1aCre/+LSL-KrasG12D/+ and Ptf1aCre/+LSL-KrasG12D/+LSL-p53R172H/+ and caerulein-induced acute pancreatitis mice models were used. mir-802 was conditionally ablated in acinar cells to study the function of miR-802 in ADM. RESULTS: We show that miR-802 is a highly abundant and acinar-enriched pancreatic miRNA that is silenced during early stages of injury or oncogenic KrasG12D-induced transformation. Genetic ablation of mir-802 cooperates with KrasG12D by promoting ADM formation. miR-802 deficiency results in de-repression of the miR-802 targets Arhgef12, RhoA, and Sdc4, activation of RhoA, and induction of the downstream RhoA effectors ROCK1, LIMK1, COFILIN1, and EZRIN, thereby increasing F-actin rearrangement. mir-802 ablation also activates SOX9, resulting in augmented levels of ductal and attenuated expression of acinar identity genes. Consistently with these findings, we show that this miR-802-RhoA-F-actin network is activated in biopsies of pancreatic cancer patients and correlates with poor survival. CONCLUSIONS: We show miR-802 suppresses pancreatic cancer initiation by repressing oncogenic Kras-induced ADM. The role of miR-802 in ADM fills the gap in our understanding of oncogenic Kras-induced F-actin reorganization, acinar reprogramming, and PDAC initiation. Modulation of the miR-802-RhoA-F-actin network may be a new strategy to interfere with pancreatic carcinogenesis.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Reprogramação Celular , MicroRNAs/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , MicroRNAs/genética , Mutação , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreatite/genética , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
9.
Angew Chem Int Ed Engl ; 60(46): 24534-24542, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34505339

RESUMO

Even populations of clonal cells are heterogeneous, which requires high-throughput analysis methods with single-cell sensitivity. Here, we propose a rapid, label-free single-cell analytical method based on active capillary dielectric barrier discharge ionization mass spectrometry, which can analyze multiple metabolites in single cells at a rate of 38 cells/minute. Multiple cell types (HEK-293T, PANC-1, CFPAC-1, H6c7, HeLa and iBAs) were discriminated successfully. We found evidence for abnormal lipid metabolism in pancreatic cancer cells. We also analyzed gene expression in a cancer genome atlas dataset and found that the mRNA level of a critical enzyme of lipid synthesis (ATP citrate lyase, ACLY) was upregulated in human pancreatic ductal adenocarcinoma (PDAC). Moreover, both an ACLY chemical inhibitor and a siRNA approach targeting ACLY could suppress the viability of PDAC cells. A significant reduction in lipid content in treated cells indicates that ACLY could be a potential target for treating pancreatic cancer.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Lipídeos/análise , Espectrometria de Massas , Metaboloma , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Análise Discriminante , Células HEK293 , Humanos , Lipídeos/biossíntese , Espectrometria de Massas/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Análise de Célula Única
10.
Nat Biomed Eng ; 5(2): 179-189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495639

RESUMO

Base editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria. The intravenous delivery of intein-split cytidine base editors by dual adeno-associated viruses led to the repair of the disease-causing mutation without generating off-target mutations in the RNA and DNA of the hepatocytes. Moreover, the transient expression of a cytidine base editor mRNA and a relevant single-guide RNA intravenously delivered by lipid nanoparticles led to ~21% on-target editing and to the reversal of the disease phenotype; there were also no detectable transcriptome-wide and genome-wide off-target edits. Our findings support the feasibility of therapeutic cytidine base editing to treat genetic liver diseases.


Assuntos
Citidina/genética , DNA/genética , Edição de Genes/métodos , Hepatócitos/metabolismo , RNA/genética , Adenoviridae/fisiologia , Animais , Vetores Genéticos/fisiologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL
11.
Endocrinology ; 162(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248443

RESUMO

Prolactin production is controlled by a complex and temporally dynamic network of factors. Despite this tightly coordinated system, pathological hyperprolactinemia is a common endocrine disorder that is often not understood, thereby highlighting the need to expand our molecular understanding of lactotroph cell regulation. MicroRNA-7 (miR-7) is the most highly expressed miRNA family in the pituitary gland and the loss of the miR-7 family member, miR-7a2, is sufficient to reduce prolactin gene expression in mice. Here, we used conditional loss-of-function and gain-of-function mouse models to characterize the function of miR-7a2 in lactotroph cells. We found that pituitary miR-7a2 expression undergoes developmental and sex hormone-dependent regulation. Unexpectedly, the loss of mir-7a2 induces a premature increase in prolactin expression and lactotroph abundance during embryonic development, followed by a gradual loss of prolactin into adulthood. On the other hand, lactotroph development is delayed in mice overexpressing miR-7a2. This regulation of lactotroph function by miR-7a2 involves complementary mechanisms in multiple cell populations. In mouse pituitary and rat prolactinoma cells, miR-7a2 represses its target Raf1, which promotes prolactin gene expression. These findings shed light on the complex regulation of prolactin production and may have implications for the physiological and pathological mechanisms underlying hyperprolactinemia.


Assuntos
Lactotrofos/fisiologia , MicroRNAs/fisiologia , Prolactina/metabolismo , Animais , Linhagem Celular , Estradiol/metabolismo , Feminino , Fertilidade , Lactação , Masculino , Camundongos , Neoplasias Hipofisárias/metabolismo , Prolactinoma/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Caracteres Sexuais
12.
Cell Rep ; 29(2): 283-300.e8, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597092

RESUMO

The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.


Assuntos
Processamento Alternativo/genética , Frutose/metabolismo , Glicerol/metabolismo , Fígado/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Fígado Gorduroso/genética , Genoma , Gluconeogênese , Homeostase , Humanos , Hiperglicemia/genética , Insulina/metabolismo , Íntrons/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Sítios de Splice de RNA/genética , Frações Subcelulares/metabolismo , Transcriptoma/genética
13.
Nat Commun ; 9(1): 4671, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405106

RESUMO

The epithelial-to-mesenchymal transition (EMT) is an important mechanism for cancer progression and metastasis. Numerous in vitro and tumor-profiling studies point to the miR-200-Zeb1 axis as crucial in regulating this process, yet in vivo studies involving its regulation within a physiological context are lacking. Here, we show that miR-200 ablation in the Rip-Tag2 insulinoma mouse model induces beta-cell dedifferentiation, initiates an EMT expression program, and promotes tumor invasion. Strikingly, disrupting the miR-200 sites of the endogenous Zeb1 locus causes a similar phenotype. Reexpressing members of the miR-200 superfamily in vitro reveals that the miR-200c family and not the co-expressed and closely related miR-141 family is responsible for regulation of Zeb1 and EMT. Our results thus show that disrupting the in vivo regulation of Zeb1 by miR-200c is sufficient to drive EMT, thus highlighting the importance of this axis in tumor progression and invasion and its potential as a therapeutic target.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mutação/genética , Invasividade Neoplásica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
14.
Elife ; 72018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29911972

RESUMO

In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.


Assuntos
Proliferação de Células , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fase G1 , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Nat Commun ; 8(1): 480, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883393

RESUMO

Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance.Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Receptor fas/metabolismo , Animais , Dieta Hiperlipídica , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Ácidos Graxos/metabolismo , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Triglicerídeos/metabolismo , Receptor fas/genética
16.
J Clin Invest ; 127(3): 1061-1074, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28218624

RESUMO

MicroRNAs (miRNAs) are negative modulators of gene expression that fine-tune numerous biological processes. miRNA loss-of-function rarely results in highly penetrant phenotypes, but rather, influences cellular responses to physiologic and pathophysiologic stresses. Here, we have reported that a single member of the evolutionarily conserved miR-7 family, miR-7a2, is essential for normal pituitary development and hypothalamic-pituitary-gonadal (HPG) function in adulthood. Genetic deletion of mir-7a2 causes infertility, with low levels of gonadotropic and sex steroid hormones, small testes or ovaries, impaired spermatogenesis, and lack of ovulation in male and female mice, respectively. We found that miR-7a2 is highly expressed in the pituitary, where it suppresses golgi glycoprotein 1 (GLG1) expression and downstream bone morphogenetic protein 4 (BMP4) signaling and also reduces expression of the prostaglandin F2a receptor negative regulator (PTGFRN), an inhibitor of prostaglandin signaling and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion. Our results reveal that miR-7a2 critically regulates sexual maturation and reproductive function by interconnecting miR-7 genomic circuits that regulate FSH and LH synthesis and secretion through their effects on pituitary prostaglandin and BMP4 signaling.


Assuntos
Hipogonadismo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Infertilidade/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Feminino , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Hipogonadismo/genética , Infertilidade/genética , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Ovário/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Testículo/metabolismo
17.
Mol Cell ; 64(3): 565-579, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27871486

RESUMO

Expression changes of competing endogenous RNAs (ceRNAs) have been proposed to influence microRNA (miRNA) activity and thereby regulate other transcripts containing miRNA-binding sites. Here, we find that although miRNA levels define the extent of repression, they have little effect on the magnitude of the ceRNA expression change required to observe derepression. Canonical 6-nt sites, which typically mediate modest repression, can nonetheless compete for miRNA binding, with potency ∼20% of that observed for canonical 8-nt sites. In aggregate, low-affinity/background sites also contribute to competition. Sites with extensive additional complementarity can appear as more potent, but only because they induce miRNA degradation. Cooperative binding of proximal sites for the same or different miRNAs does increase potency. These results provide quantitative insights into the stoichiometric relationship between miRNAs and target abundance, target-site spacing, and affinity requirements for ceRNA-mediated gene regulation, and the unusual circumstances in which ceRNA-mediated gene regulation might be observed.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hepatócitos/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Genes Reporter , Hepatócitos/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Transformação Genética , Proteína Vermelha Fluorescente
18.
Nat Med ; 21(6): 619-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25985365

RESUMO

Pancreatic beta cell death is a hallmark of type 1 (T1D) and type 2 (T2D) diabetes, but the molecular mechanisms underlying this aspect of diabetic pathology are poorly understood. Here we report that expression of the microRNA (miR)-200 family is strongly induced in islets of diabetic mice and that beta cell-specific overexpression of miR-200 in mice is sufficient to induce beta cell apoptosis and lethal T2D. Conversely, mir-200 ablation in mice reduces beta cell apoptosis and ameliorates T2D. We show that miR-200 negatively regulates a conserved anti-apoptotic and stress-resistance network that includes the essential beta cell chaperone Dnajc3 (also known as p58IPK) and the caspase inhibitor Xiap. We also observed that mir-200 dosage positively controls activation of the tumor suppressor Trp53 and thereby creates a pro-apoptotic gene-expression signature found in islets of diabetic mice. Consequently, miR-200-induced T2D is suppressed by interfering with the signaling of Trp53 and Bax, a proapoptotic member of the B cell lymphoma 2 protein family. Our results reveal a crucial role for the miR-200 family in beta cell survival and the pathophysiology of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/biossíntese , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/biossíntese
19.
J Lipid Res ; 55(8): 1730-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24950692

RESUMO

Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom(-/-)) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom(-/-) mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5(-/-)), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5(-/-) mice. In contrast to Apom(-/-) mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations.


Assuntos
Apolipoproteínas M/metabolismo , Eritrócitos/metabolismo , Túbulos Renais/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Apolipoproteínas M/genética , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/genética , Camundongos , Camundongos Knockout , Esfingosina/genética , Esfingosina/metabolismo
20.
Mol Syst Biol ; 9: 681, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23860498

RESUMO

The metabolic syndrome is a collection of risk factors including obesity, insulin resistance and hepatic steatosis, which occur together and increase the risk of diseases such as diabetes, cardiovascular disease and cancer. In spite of intense research, the complex etiology of insulin resistance and its association with the accumulation of triacylglycerides in the liver and with hepatic steatosis remains not completely understood. Here, we performed quantitative measurements of 144 proteins involved in the insulin-signaling pathway and central metabolism in liver homogenates of two genetically well-defined mouse strains C57BL/6J and 129Sv that were subjected to a sustained high-fat diet. We used targeted mass spectrometry by selected reaction monitoring (SRM) to generate accurate and reproducible quantitation of the targeted proteins across 36 different samples (12 conditions and 3 biological replicates), generating one of the largest quantitative targeted proteomics data sets in mammalian tissues. Our results revealed rapid response to high-fat diet that diverged early in the feeding regimen, and evidenced a response to high-fat diet dominated by the activation of peroxisomal ß-oxidation in C57BL/6J and by lipogenesis in 129Sv mice.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Insulina/metabolismo , Lipogênese/genética , Obesidade/metabolismo , Peroxissomos/metabolismo , Proteoma/metabolismo , Transdução de Sinais , Adipogenia/genética , Animais , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Regulação da Expressão Gênica , Resistência à Insulina/genética , Espectrometria de Massas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Oxirredução , Peroxissomos/genética , Proteoma/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA