Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685031

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Disfunção Cognitiva , Dieta Hiperlipídica , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Reconhecimento Psicológico/fisiologia , Obesidade/patologia , Obesidade/complicações , Aprendizagem em Labirinto/fisiologia
2.
J Neurochem ; 156(2): 225-248, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926033

RESUMO

We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3ß. GSK-3ß regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3ß/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3ß/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3ß/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Niacinamida/análogos & derivados , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Niacinamida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais/fisiologia
3.
Cell Death Dis ; 11(7): 587, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719328

RESUMO

DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.


Assuntos
Dano ao DNA , Neurônios/patologia , Plicamicina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Morte Celular/efeitos dos fármacos , Etoposídeo/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Plicamicina/uso terapêutico , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
4.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718090

RESUMO

Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.


Assuntos
Reparo do DNA/efeitos da radiação , MicroRNAs/biossíntese , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Lesões Experimentais por Radiação/metabolismo , Regulação para Cima/efeitos da radiação , Raios X/efeitos adversos , Animais , Morte Celular/efeitos da radiação , Dano ao DNA , Masculino , Camundongos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Lesões Experimentais por Radiação/patologia
5.
Neurochem Int ; 138: 104770, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454165

RESUMO

Chronic dysregulated microglial activation may lead to persistent inflammation and progressive neurodegeneration. A previous study reported that ADX88178, a putative metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator (PAM), exerts anti-inflammatory effects in microglia by activating mGluR4. We employed in vitro models of immortalized microglia cell lines and primary microglia to elucidate the molecular mechanisms responsible for the regulation of inflammatory pathways by ADX88178 and other mGluR4 PAMs. ADX88178 downregulated lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators, including TNF-α, IL-1ß, CCL-2, IL-6, NOS2, and miR-155, as well as NO levels, in BV2 cells and primary microglia. Other mGluR4 modulators had divergent activities; VU0361737 (PAM) showed anti-inflammatory effects, whereas the orthosteric group III agonist, L-AP4, and VU0155041 (PAM) displayed no anti-inflammatory actions. In contrast to the earlier report, ADX88178 anti-inflammatory effects appeared to be mGluR4-independent as mGluR4 expression in our in vitro models was very low and its actions were not altered by pharmacological or molecular inhibition of mGluR4. Moreover, we showed that ADX88178 activated Gi-independent, alternative signaling pathways as indicated by the absence of pertussis toxin-mediated inhibition and by increased phosphorylation of cAMP-response element binding protein (CREB), an inhibitor of the NFkB pro-inflammatory pathway. ADX88178 also attenuated NFkB activation by reducing the degradation of IkB and the associated translocation of NFkB-p65 to the nucleus. ADX88178 did not exert its anti-inflammatory effects through adenosine receptors, reported as mGluR4 heteromerization partners. Thus, our results indicate that in microglia, putative mGluR4 PAMs activate mGluR4/Gi-independent mechanisms to attenuate pro-inflammatory pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pirimidinas/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Tiazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glutamato Metabotrópico/agonistas
6.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456284

RESUMO

Radiation-induced central nervous system toxicity is a significant risk factor for patients receiving cancer radiotherapy. Surprisingly, the mechanisms responsible for the DNA damage-triggered neuronal cell death following irradiation have yet to be deciphered. Using primary cortical neuronal cultures in vitro, we demonstrated that X-ray exposure induces the mitochondrial pathway of intrinsic apoptosis and that miR-23a-3p plays a significant role in the regulation of this process. Primary cortical neurons exposed to irradiation show the activation of DNA-damage response pathways, including the sequential phosphorylation of ATM kinase, histone H2AX, and p53. This is followed by the p53-dependent up-regulation of the pro-apoptotic Bcl2 family molecules, including the BH3-only molecules PUMA, Noxa, and Bim, leading to mitochondrial outer membrane permeabilization (MOMP) and the release of cytochrome c, which activates caspase-dependent apoptosis. miR-23a-3p, a negative regulator of specific pro-apoptotic Bcl-2 family molecules, is rapidly decreased after neuronal irradiation. By increasing the degradation of PUMA and Noxa mRNAs in the RNA-induced silencing complex (RISC), the administration of the miR-23a-3p mimic inhibits the irradiation-induced up-regulation of Noxa and Puma. These changes result in an attenuation of apoptotic processes such as MOMP, the release of cytochrome c and caspases activation, and a reduction in neuronal cell death. The neuroprotective effects of miR-23a-3p administration may not only involve the direct inhibition of pro-apoptotic Bcl-2 molecules downstream of p53 but also include the attenuation of secondary DNA damage upstream of p53. Importantly, we demonstrated that brain irradiation in vivo results in the down-regulation of miR-23a-3p and the elevation of pro-apoptotic Bcl2-family molecules PUMA, Noxa, and Bax, not only broadly in the cortex and hippocampus, except for Bax, which was up-regulated only in the hippocampus but also selectively in isolated neuronal populations from the irradiated brain. Overall, our data suggest that miR-23a-3p down-regulation contributes to irradiation-induced intrinsic pathways of neuronal apoptosis. These regulated pathways of neurodegeneration may be the target of effective neuroprotective strategies using miR-23a-3p mimics to block their development and increase neuronal survival after irradiation.


Assuntos
Apoptose , Dano ao DNA , MicroRNAs/metabolismo , Neurônios/metabolismo , Radiação Ionizante , Transdução de Sinais , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Masculino , Camundongos , MicroRNAs/fisiologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Cell Death Dis ; 10(11): 839, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685802

RESUMO

Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.


Assuntos
Angiopoietina-1/metabolismo , Contusões/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Animais , Contusões/patologia , Camundongos , MicroRNAs/antagonistas & inibidores , Traumatismos da Medula Espinal/patologia
8.
Neurobiol Aging ; 77: 194-206, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30904769

RESUMO

After traumatic brain injury (TBI), individuals aged over 65 years show increased mortality and worse functional outcomes compared with younger persons. As neuroinflammation is a key pathobiological mechanism of secondary injury after TBI, we examined how aging affects post-traumatic microglial responses and functional outcomes. Young (3-month-old) and aged (18-month-old) male C57Bl/6 mice were subjected to moderate-level controlled cortical impact or sham surgery, and neurological function was evaluated. At 72 hours after injury, brain, blood, and spleen leukocyte counts were assessed ex vivo using flow cytometry. Aged mice demonstrated more severe deficits in forelimb grip strength, balance and motor coordination, spontaneous locomotor activity, and anxiety-like behavior. These animals also exhibited more robust microglial proliferation and significantly higher numbers of brain-infiltrating leukocytes. Microglia in aged mice showed impairments in phagocytic activity and higher production of interleukin-1ß (IL-1ß). Infiltrating myeloid cells in aged TBI mice also had deficits in phagocytosis but showed diminished proinflammatory cytokine production and greater reactive oxygen species production. Expression of several senescence markers (Bcl-2, p16ink4a, p21cip1a, lipofuscin, and H2AX [pS139]) was increased with age and/or TBI in both microglia and injured cortex. Although there was no difference in the number of circulating blood neutrophils as a function of age, young mice exhibited more pronounced TBI-induced splenomegaly and splenic myeloid cell expansion. Thus, worse post-traumatic behavioral outcomes in aged animals are associated with exaggerated microglial responses, increased leukocyte invasion, and upregulation of senescence markers.


Assuntos
Envelhecimento/patologia , Lesões Encefálicas/patologia , Senescência Celular , Microglia/patologia , Animais , Ansiedade , Comportamento Animal , Encéfalo/patologia , Lesões Encefálicas/fisiopatologia , Senescência Celular/genética , Força da Mão , Inflamação , Interleucina-1beta/metabolismo , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Atividade Motora , Fagocitose , Desempenho Psicomotor , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
9.
Cell Death Dis ; 9(11): 1121, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401820

RESUMO

Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1-/-/E2F2-/- or E2F2-/- transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.


Assuntos
Lesões Encefálicas Traumáticas/prevenção & controle , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/genética , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Caspases/genética , Caspases/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F2/deficiência , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
J Neurotrauma ; 35(20): 2462-2481, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29774773

RESUMO

Angiopoietin-1 (Ang-1) is a well-known endothelial growth factor, but its effects on neurons have yet to be elucidated. We show that Ang-1 is rapidly downregulated in the injured brain after controlled cortical impact (CCI), a mouse experimental traumatic brain injury (TBI) model and in etoposide-induced neuronal apoptosis in vitro. Ang-1 treatment inhibits etoposide-induced upregulation of proapoptotic B-cell lymphoma 2 (Bcl-2) family members Noxa, p53 upregulated modulator of apoptosis (Puma), Bcl-2 interacting mediator of cell death (Bim), and Bcl-2-associated X protein (Bax); reduces markers of caspase-dependent (cytochrome c release/caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways; and limits neuronal cell death. Ang-1 treatment phosphorylates receptors Tunica interna endothelial cell kinase 2 (Tie2), and ß1-integrin and limits the etoposide-induced decrease in protein kinase B (Akt) activity. Blocking Tie2 and ß1-integrin signaling reduces Ang-1 neuroprotective effects. After both TBI and etoposide treatment microRNA (miR)-711 are upregulated, consistent with its putative role as a negative regulator of Ang-1. We show that miR-711 directly targets the Ang-1 messenger RNA (mRNA), decreasing Ang-1 expression. Increased levels of miR-711 and Ang-1 mRNA are found in the RNA-induced silencing complex complex site of miR-mediated degradation of target mRNAs after etoposide treatment and the miR-711mimic downregulates Ang-1. Administration of miR-711 inhibitor elevates Ang-1 after TBI whereas Ang-1 administration increases Akt activation; reduces Puma, Noxa, Bim, and Bax levels; and attenuates caspase-dependent and -independent neuronal apoptosis 24 h after TBI. Ang-1 also attenuates neuronal degeneration, increases gene expression of molecules that maintain blood-brain barrier integrity, and reduces post-traumatic lesion volume/edema 24 h after TBI. Although we only observed short-term neuroprotective effects after Ang-1 administration, miR-711-dependent downregulation of Ang-1, followed by Akt pathway inhibition, may play a role in neuronal cell death after neuronal injury in vitro and after experimental TBI.


Assuntos
Angiopoietina-1/metabolismo , Apoptose/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Regulação para Baixo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Ratos
11.
J Neuroinflammation ; 14(1): 65, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340575

RESUMO

BACKGROUND: NADPH oxidase (NOX2) is an enzyme system that generates reactive oxygen species (ROS) in microglia and macrophages. Excessive ROS production is linked with neuroinflammation and chronic neurodegeneration following traumatic brain injury (TBI). Redox signaling regulates macrophage/microglial phenotypic responses (pro-inflammatory versus anti-inflammatory), and NOX2 inhibition following moderate-to-severe TBI markedly reduces pro-inflammatory activation of macrophages/microglia resulting in concomitant increases in anti-inflammatory responses. Here, we report the signaling pathways that regulate NOX2-dependent macrophage/microglial phenotype switching in the TBI brain. METHODS: Bone marrow-derived macrophages (BMDMs) prepared from wildtype (C57Bl/6) and NOX2 deficient (NOX2-/-) mice were treated with lipopolysaccharide (LPS; 10 ng/ml), interleukin-4 (IL-4; 10 ng/ml), or combined LPS/IL-4 to investigate signal transduction pathways associated with macrophage activation using western immunoblotting and qPCR analyses. Signaling pathways and activation markers were evaluated in ipsilateral cortical tissue obtained from adult male wildtype and NOX2-/- mice that received moderate-level controlled cortical impact (CCI). A neutralizing anti-IL-10 approach was used to determine the effects of IL-10 on NOX2-dependent transitions from pro- to anti-inflammatory activation states. RESULTS: Using an LPS/IL-4-stimulated BMDM model that mimics the mixed pro- and anti-inflammatory responses observed in the injured cortex, we show that NOX2-/- significantly reduces STAT1 signaling and markers of pro-inflammatory activation. In addition, NOX2-/- BMDMs significantly increase anti-inflammatory marker expression; IL-10-mediated STAT3 signaling, but not STAT6 signaling, appears to be critical in regulating this anti-inflammatory response. Following moderate-level CCI, IL-10 is significantly increased in microglia/macrophages in the injured cortex of NOX2-/- mice. These changes are associated with increased STAT3 activation, but not STAT6 activation, and a robust anti-inflammatory response. Neutralization of IL-10 in NOX2-/- BMDMs or CCI mice blocks STAT3 activation and the anti-inflammatory response, thereby demonstrating a critical role for IL-10 in regulating NOX2-dependent transitions between pro- and anti-inflammatory activation states. CONCLUSIONS: These studies indicate that following TBI NOX2 inhibition promotes a robust anti-inflammatory response in macrophages/microglia that is mediated by the IL-10/STAT3 signaling pathway. Thus, therapeutic interventions that inhibit macrophage/microglial NOX2 activity may improve TBI outcomes by not only limiting pro-inflammatory neurotoxic responses, but also enhancing IL-10-mediated anti-inflammatory responses that are neuroprotective.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Inflamação/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , NADPH Oxidase 2/deficiência , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo
12.
Brain Behav Immun ; 58: 291-309, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27477920

RESUMO

Following traumatic brain injury (TBI), activation of microglia and peripherally derived inflammatory macrophages occurs in association with tissue damage. This neuroinflammatory response may have beneficial or detrimental effects on neuronal survival, depending on the functional polarization of these cells along a continuum from M1-like to M2-like activation states. The mechanisms that regulate M1-like and M2-like activation after TBI are not well understood, but appear in part to reflect the redox state of the lesion microenvironment. NADPH oxidase (NOX2) is a critical enzyme system that generates reactive oxygen species in microglia/macrophages. After TBI, NOX2 is strongly up-regulated in M1-like, but not in M2-like polarized cells. Therefore, we hypothesized that NOX2 drives M1-like neuroinflammation and contributes to neurodegeneration and loss of neurological function after TBI. In the present studies we inhibited NOX2 activity using NOX2-knockout mice or the selective peptide inhibitor gp91ds-tat. We show that NOX2 is highly up-regulated in infiltrating macrophages after injury, and that NOX2 deficiency reduces markers of M1-like activation, limits tissue loss and neurodegeneration, and improves motor recovery after moderate-level control cortical injury (CCI). NOX2 deficiency also promotes M2-like activation after CCI, through increased IL-4Rα signaling in infiltrating macrophages, suggesting that NOX2 acts as a critical switch between M1- and M2-like activation states after TBI. Administration of gp91ds-tat to wild-type CCI mice starting at 24h post-injury reduces deficits in cognitive function and increased M2-like activation in the hippocampus. Collectively, our data indicate that increased NOX2 activity after TBI drives M1-like activation that contributes to inflammatory-mediated neurodegeneration, and that inhibiting this pathway provides neuroprotection, in part by altering M1-/M2-like balance towards the M2-like neuroinflammatory response.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encefalite/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , NADPH Oxidase 2/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/genética , Memória Espacial
13.
J Neurotrauma ; 33(21): 1919-1935, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27050417

RESUMO

Clinical and experimental studies show that spinal cord injury (SCI) can cause cognitive impairment and depression that can significantly impact outcomes. Thus, identifying mechanisms responsible for these less well-examined, important SCI consequences may provide targets for more effective therapeutic intervention. To determine whether cognitive and depressive-like changes correlate with injury severity, we exposed mice to sham, mild, moderate, or severe SCI using the Infinite Horizon Spinal Cord Impactor and evaluated performance on a variety of neurobehavioral tests that are less dependent on locomotion. Cognitive impairment in Y-maze, novel objective recognition, and step-down fear conditioning tasks were increased in moderate- and severe-injury mice that also displayed depressive-like behavior as quantified in the sucrose preference, tail suspension, and forced swim tests. Bromo-deoxyuridine incorporation with immunohistochemistry revealed that SCI led to a long-term reduction in the number of newly-generated immature neurons in the hippocampal dentate gyrus, accompanied by evidence of greater neuronal endoplasmic reticulum (ER) stress. Stereological analysis demonstrated that moderate/severe SCI reduced neuronal survival and increased the number of activated microglia chronically in the cerebral cortex and hippocampus. The potent microglial activator cysteine-cysteine chemokine ligand 21 (CCL21) was elevated in the brain sites after SCI in association with increased microglial activation. These findings indicate that SCI causes chronic neuroinflammation that contributes to neuronal loss, impaired hippocampal neurogenesis and increased neuronal ER stress in important brain regions associated with cognitive decline and physiological depression. Accumulation of CCL21 in brain may subserve a pathophysiological role in cognitive changes and depression after SCI.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Depressão/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Neurogênese/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Encéfalo/patologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Depressão/psicologia , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/psicologia
14.
Cell Cycle ; 14(23): 3698-712, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505089

RESUMO

Traumatic spinal cord injury (SCI) induces cell cycle activation (CCA) that contributes to secondary injury and related functional impairments such as motor deficits and hyperpathia. E2F1 and E2F2 are members of the activator sub-family of E2F transcription factors that play an important role in proliferating cells and in cell cycle-related neuronal death, but no comprehensive study have been performed in SCI to determine the relative importance of these factors. Here we examined the temporal distribution and cell-type specificity of E2F1 and E2F2 expression following mouse SCI, as well as the effects of genetic deletion of E2F1-2 on neuronal cell death, neuroinflammation and associated neurological dysfunction. SCI significantly increased E2F1 and E2F2 expression in active caspase-3(+) neurons/oligodendrocytes as well as in activated microglia/astrocytes. Injury-induced up-regulation of cell cycle-related genes and protein was significantly reduced by intrathecal injection of high specificity E2F decoy oligodeoxynucleotides against the E2F-binding site or in E2F1-2 null mice. Combined E2F1+2 siRNA treatment show greater neuroprotection in vivo than E2F1 or E2F2 single siRNA treatment. Knockout of both E2F1 and E2F2 genes (E2Fdko) significantly reduced neuronal death, neuroinflammation, and tissue damage, as well as limiting motor dysfunction and hyperpathia after SCI. Both CCA reduction and functional improvement in E2Fdko mice were greater than those in E2F2ko model. These studies demonstrate that SCI-induced activation of E2F1-2 mediates CCA, contributing to gliopathy and neuronal/tissue loss associated with motor impairments and post-traumatic hyperesthesia. Thus, E2F1-2 provide a therapeutic target for decreasing secondary tissue damage and promoting recovery of function after SCI.


Assuntos
Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Morte Celular , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo
15.
J Neurotrauma ; 32(17): 1347-60, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25419789

RESUMO

Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3-only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI.


Assuntos
Comportamento Animal/fisiologia , Lesões Encefálicas/terapia , Encéfalo/metabolismo , Terapia por Exercício , Neuroproteção/fisiologia , Condicionamento Físico Animal , Recuperação de Função Fisiológica/fisiologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/prevenção & controle , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Neurotherapeutics ; 11(4): 857-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25096154

RESUMO

Traumatic brain injury (TBI) causes microglial activation and related neurotoxicity that contributes to chronic neurodegeneration and loss of neurological function. Selective activation of metabotropic glutamate receptor 5 (mGluR5) by the orthosteric agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), is neuroprotective in experimental models of TBI, and has potent anti-inflammatory effects in vitro. However, the therapeutic potential of CHPG is limited due to its relatively weak potency and brain permeability. Highly potent, selective and brain penetrant mGluR5 positive allosteric modulators (PAMs) have been developed and show promise as therapeutic agents. We evaluated the therapeutic potential of a novel mGluR5 PAM, VU0360172, after controlled cortical impact (CCI) in mice. Vehicle, VU0360172, or VU0360172 plus mGluR5 antagonist (MTEP), were administered systemically to CCI mice at 3 h post-injury; lesion volume, hippocampal neurodegeneration, microglial activation, and functional recovery were assessed through 28 days post-injury. Anti-inflammatory effects of VU0360172 were also examined in vitro using BV2 and primary microglia. VU0360172 treatment significantly reduced the lesion, attenuated hippocampal neurodegeneration, and improved motor function recovery after CCI. Effects were mediated by mGluR5 as co-administration of MTEP blocked the protective effects of VU0360172. VU0360172 significantly reduced CD68 and NOX2 expression in activated microglia in the cortex at 28 days post-injury, and also suppressed pro-inflammatory signaling pathways in BV2 and primary microglia. In addition, VU0360172 treatment shifted the balance between M1/M2 microglial activation states towards an M2 pro-repair phenotype. This study demonstrates that VU0360172 confers neuroprotection after experimental TBI, and suggests that mGluR5 PAMs may be promising therapeutic agents for head injury.


Assuntos
Lesões Encefálicas/prevenção & controle , Córtex Cerebral/efeitos dos fármacos , Glicina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Fenilacetatos/farmacologia , Receptor de Glutamato Metabotrópico 5/agonistas , Regulação Alostérica , Animais , Lesões Encefálicas/metabolismo , Contagem de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Recuperação de Função Fisiológica , Tiazóis/farmacologia
17.
J Neurosci ; 34(30): 10055-71, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057207

RESUMO

MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured cortex in the first hour after TBI. These changes coincided with increased expression of the proapoptotic Bcl-2 family members Noxa, Puma, and Bax. In an etoposide-induced in vitro model of apoptosis in primary cortical neurons, miR-23a and miR-27a were markedly downregulated as early as 1 h after exposure, before the upregulation of proapoptotic Bcl-2 family molecules. Administration of miR-23a and miR-27a mimics attenuated etoposide-induced changes in Noxa, Puma, and Bax, reduced downstream markers of caspase-dependent (cytochrome c release and caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways, and limited neuronal cell death. In contrast, miRs hairpin inhibitors enhanced etoposide-induced neuronal apoptosis and caspase activation. Importantly, administration of miR-23a and miR-27a mimics significantly reduced activation of Puma, Noxa, and Bax as well as attenuated markers of caspase-dependent and -independent apoptosis after TBI. Furthermore, miR-23a and miR-27a mimics significantly attenuated cortical lesion volume and neuronal cell loss in the hippocampus after TBI. These findings indicate that post-traumatic decreases in miR-23a and miR-27a contribute to neuronal cell death after TBI by upregulating proapoptotic Bcl-2 family members, thus providing a novel therapeutic target.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas/metabolismo , Regulação para Baixo/genética , MicroRNAs/antagonistas & inibidores , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/genética , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Morte Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Regulação para Cima/genética
18.
J Cereb Blood Flow Metab ; 34(3): 502-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24398934

RESUMO

Central nervous system injury causes a marked increase in the expression of cell cycle-related proteins. In this study, we show that cell cycle activation (CCA) is detected in mature neurons at 24 hours after rat lateral fluid percussion (LFP)-induced traumatic brain injury (TBI), as reflected by increased expression of cyclin G1, phosphorylated retinoblastoma (phospho-Rb), E2F1 and proliferating cell nuclear antigen (PCNA). These changes were associated with progressive cortical, hippocampal, and thalamic neuronal loss and microglial and astrocyte activation. Notably, we detected 5-bromo-2'-deoxyuridine (BrdU)-positive neurons, microglia, and astrocytes at 7 days, but not at 24 hours, suggesting that cell cycle reaches the S phase in these cell types at the latter time point. A delayed systemic post-LFP administration at 3 hours of CR8--a potent second-generation cyclin-dependent kinase (CDK) inhibitor--reduced CCA; cortical, hippocampal, and thalamic neuronal loss; and cortical microglial and astrocyte activation. Furthermore, CR8 treatment attenuated sensorimotor and cognitive deficits, alleviated depressive-like symptoms, and decreased lesion volume. These findings underscore the contribution of CCA to progressive neurodegeneration and chronic neuroinflammation following TBI, and demonstrate the neuroprotective potential of cell cycle inhibition in a clinically relevant experimental TBI model.


Assuntos
Astrócitos/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Purinas/uso terapêutico , Piridinas/uso terapêutico , Animais , Astrócitos/enzimologia , Astrócitos/patologia , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/enzimologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Microglia/enzimologia , Microglia/patologia , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Purinas/administração & dosagem , Purinas/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley
19.
CNS Neurol Disord Drug Targets ; 13(4): 558-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24168364

RESUMO

Traumatic brain injury causes progressive neurodegeneration associated with chronic microglial activation. Recent studies show that neurodegeneration and neuroinflammation after traumatic brain injury can be inhibited as late as one month in animals by the activation of the metabotropic glutamate receptor 5 in microglia using (RS)-2-chloro-5- hydroxy-phenylglycine. However, the therapeutic potential of this agonist is limited due to its relatively weak potency and brain permeability. To address such concerns, we evaluated the anti-inflammatory activities of several positive allosteric modulators using various in vitro assays, and found that 3,3'-difluorobenzaldazine, 3-cyano-N-(1,3-diphenyl-1H-pyrazol- 5-yl)benzamide and 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide showed significantly improved potency which makes them potential lead compounds for further development of positive allosteric modulators for the treatment of traumatic brain injury.


Assuntos
Anti-Inflamatórios/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica , Animais , Benzamidas/farmacologia , Lesões Encefálicas/tratamento farmacológico , Linhagem Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Interferon gama/metabolismo , Lipopolissacarídeos , Camundongos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
20.
Neurobiol Aging ; 34(5): 1397-411, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23273602

RESUMO

Traumatic brain injury (TBI) causes chronic microglial activation that contributes to subsequent neurodegeneration, with clinical outcomes declining as a function of aging. Microglia/macrophages (MG/Mɸ) have multiple phenotypes, including a classically activated, proinflammatory (M1) state that might contribute to neurotoxicity, and an alternatively activated (M2) state that might promote repair. In this study we used gene expression, immunohistochemical, and stereological analyses to show that TBI in aged versus young mice caused larger lesions associated with an M1/M2 balance switch and increased numbers of reactive (bushy and hypertrophic) MG/Mɸ in the cortex, hippocampus, and thalamus. Chitinase3-like 3 (Ym1), an M2 phenotype marker, displayed heterogeneous expression after TBI with amoeboid-like Ym1-positive MG/Mɸ at the contusion site and ramified Ym1-positive MG/Mɸ at distant sites; this distribution was age-related. Aged-injured mice also showed increased MG/Mɸ expression of major histocompatibility complex II and NADPH oxidase, and reduced antioxidant enzyme expression which was associated with lesion size and neurodegeneration. Thus, altered relative M1/M2 activation and an nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase)-mediated shift in redox state might contribute to worse outcomes observed in older TBI animals by creating a more proinflammatory M1 MG/Mɸ activation state.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Encéfalo/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Doença Crônica , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA