Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Channels (Austin) ; 13(1): 264-286, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31237176

RESUMO

Calcium entry is central to the functional processes in mast cells and basophils that contribute to the induction and maintenance of inflammatory responses. Mast cells and basophils express an array of calcium channels, which mediate responses to diverse stimuli triggered by small bioactive molecules, physicochemical stimuli and immunological inputs including antigens and direct immune cell interactions. These cells are also highly responsive to certain venoms (such as Hymenoptera envenomations), which cause histamine secretion, cytokine release and an array of pro-inflammatory functional responses. There are gaps in our understanding of the coupling of venom exposure to specific signaling pathways such as activation of calcium channels. In the present study, we performed a current survey of a model mast cell line selected for its pleiotropic responsiveness to multiple pro-inflammatory inputs. As a heterogenous stimulus, Hymenoptera venom activates multiple classes of conductance at the population level but tend to lead to the measurement of only one type of conductance per cell, despite the cell co-expressing multiple channel types. The data show that ICRAC, IARC, and TRPV-like currents are present in the model mast cell populations and respond to venom exposure. We further assessed individual venom components, specifically secretagogues and arachidonic acid, and identified the conductances associated with these stimuli in mast cells. Single-cell calcium assays and immunofluorescence analysis show that there is heterogeneity of channel expression across the cell population, but this heterogeneity does not explain the apparent selectivity for specific channels in response to exposure to venom as a composite stimulus.


Assuntos
Venenos de Artrópodes/farmacologia , Mordeduras e Picadas/imunologia , Himenópteros/fisiologia , Mastócitos/imunologia , Animais , Venenos de Artrópodes/imunologia , Venenos de Artrópodes/toxicidade , Histamina/imunologia , Humanos , Himenópteros/imunologia , Mastócitos/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/imunologia
2.
Phytother Res ; 29(4): 582-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25640812

RESUMO

Kava is a soporific, anxiolytic and relaxant in widespread ritual and recreational use throughout the Pacific. Traditional uses of kava by indigenous Pacific Island peoples reflect a complex pharmacopeia, centered on GABA-ergic effects of the well-characterized kavalactones. However, peripheral effects of kava suggest active components other than the CNS-targeted kavalactones. We have previously shown that immunocytes exhibit calcium mobilization in response to traditionally prepared kava extracts, and that the kavalactones do not induce these calcium responses. Here, we characterize the complex calcium-mobilizing activity of traditionally prepared and partially HPLC-purified kava extracts, noting induction of both calcium entry and store release pathways. Kava components activate intracellular store depletion of thapsigargin-sensitive and -insensitive stores that are coupled to the calcium release activated (CRAC) current, and cause calcium entry through non-store-operated pathways. Together with the pepper-like potency reported by kava users, these studies lead us to hypothesize that kava extracts contain one or more ligands for the transient receptor potential (TRP) family of ion channels. Indeed, TRP-like conductances are observed in kava-treated cells under patch clamp. Thus TRP-mediated cellular effects may be responsible for some of the reported pharmacology of kava.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Kava/química , Extratos Vegetais/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ligantes , Técnicas de Patch-Clamp , Ratos , Tapsigargina/química
3.
Nature ; 411(6837): 590-5, 2001 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-11385574

RESUMO

The molecular mechanisms that regulate basal or background entry of divalent cations into mammalian cells are poorly understood. Here we describe the cloning and functional characterization of a Ca2+- and Mg2+-permeable divalent cation channel, LTRPC7 (nomenclature compatible with that proposed in ref. 1), a new member of the LTRPC family of putative ion channels. Targeted deletion of LTRPC7 in DT-40 B cells was lethal, indicating that LTRPC7 has a fundamental and nonredundant role in cellular physiology. Electrophysiological analysis of HEK-293 cells overexpressing recombinant LTRPC7 showed large currents regulated by millimolar levels of intracellular Mg.ATP and Mg.GTP with the permeation properties of a voltage-independent divalent cation influx pathway. Analysis of several cultured cell types demonstrated small magnesium-nucleotide-regulated metal ion currents (MagNuM) with regulation and permeation properties essentially identical to the large currents observed in cells expressing recombinant LTRPC7. Our data indicate that LTRPC7, by virtue of its sensitivity to physiological Mg.ATP levels, may be involved in a fundamental process that adjusts plasma membrane divalent cation fluxes according to the metabolic state of the cell.


Assuntos
Canais Iônicos/fisiologia , Proteínas de Membrana , Proteínas Quinases/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Galinhas , Clonagem Molecular , Marcação de Genes , Humanos , Canais Iônicos/genética , Camundongos , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM
4.
Nature ; 411(6837): 595-9, 2001 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-11385575

RESUMO

Free ADP-ribose (ADPR), a product of NAD hydrolysis and a breakdown product of the calcium-release second messenger cyclic ADPR (cADPR), has no defined role as an intracellular signalling molecule in vertebrate systems. Here we show that a 350-amino-acid protein (designated NUDT9) and a homologous domain (NUDT9 homology domain) near the carboxy terminus of the LTRPC2/TrpC7 putative cation channel both function as specific ADPR pyrophosphatases. Whole-cell and single-channel analysis of HEK-293 cells expressing LTRPC2 show that LTRPC2 functions as a calcium-permeable cation channel that is specifically gated by free ADPR. The expression of native LTRPC2 transcripts is detectable in many tissues including the U937 monocyte cell line, in which ADPR induces large cation currents (designated IADPR) that closely match those mediated by recombinant LTRPC2. These results indicate that intracellular ADPR regulates calcium entry into cells that express LTRPC2.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Canais de Cálcio/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Proteínas de Membrana , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Linhagem Celular , Clonagem Molecular , Escherichia coli , Humanos , Canais Iônicos/química , Canais Iônicos/genética , Dados de Sequência Molecular , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Canais de Cátion TRPC , Canais de Cátion TRPM , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA