RESUMO
The immediate precursor to murine type 1 conventional DCs (cDC1s) has recently been established and named "pre-cDC1s". Mature CD8α+ cDC1s are recognized for suppressing graft-versus-host disease (GvHD) while promoting graft-versus-leukemia (GvL), however pre-cDC1s have not previously been investigated in the context of alloreactivity or anti-tumor responses. Characterization of pre-cDC1s, compared to CD8α+ cDC1s, found that a lower percentage of pre-cDC1s express PD-L1, yet express greater PD-L1 by MFI and a greater percent PIR-B, a GvHD-suppressing molecule. Functional assays were performed ex vivo following in vivo depletion of CD8α+ DCs to examine whether pre-cDC1s play a redundant role in alloreactivity. Proliferation assays revealed less allogeneic T-cell proliferation in the absence of CD8α+ cDC1s, with slightly greater CD8+ T-cell proliferation. Further, in the absence of CD8α+ cDC1s, stimulated CD8+ T-cells exhibited significantly less PD-1 expression compared to CD4+ T-cells, and alloreactive T-cell death was significantly lower, driven by reduced CD4+ T-cell death. Tumor-killing assays revealed that T-cells primed with CD8α-depleted DCs ex vivo induce greater killing of A20 B-cell leukemia cells, particularly when antigen (Ag) is limited. Bulk RNA sequencing revealed distinct transcriptional programs of these DCs, with pre-cDC1s exhibiting activated PD-1/PD-L1 signaling compared to CD8α+ cDC1s. These results indicate distinct T-cell-priming capabilities of murine pre-cDC1s compared to CD8α+ cDC1s ex vivo, with potentially clinically relevant implications in suppressing GvHD while promoting GvL responses, highlighting the need for greater investigation of murine pre-cDC1s.
Assuntos
Doença Enxerto-Hospedeiro , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Células Dendríticas , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismoRESUMO
The growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and development, controlling survival and expansion by binding to Flt3 receptor tyrosine kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L has been found to suppress graft-versus-host disease (GvHD), specifically via host DCs. We previously reported that the pre-transplant conditioning regimen consisting of bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced GvHD compared to cyclophosphamide (CY)+TBI. Pre-transplant BEN+TBI conditioning was also associated with greater Flt3 expression among host DCs and an accumulation of pre-cDC1s. Here, we demonstrate that exposure to BEN increases Flt3 expression on both murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs (moDCs). BEN favors development of murine plasmacytoid DCs, pre-cDC1s, and cDC2s. While humans do not have an identifiable equivalent to murine pre-cDC1s, exposure to BEN resulted in decreased plasmacytoid DCs and increased cDC2s. BEN exposure and heightened Flt3 signaling are associated with a distinct regulatory phenotype, with increased PD-L1 expression and decreased ICOS-L expression. BMDCs exposed to BEN exhibit diminished pro-inflammatory cytokine response to LPS and induce robust proliferation of alloreactive T-cells. These proliferative alloreactive T-cells expressed greater levels of PD-1 and underwent increased programmed cell death as the concentration of BEN exposure increased. Alloreactive CD4+ T-cell death may be attributable to pre-cDC1s and provides a potential mechanism by which BEN+TBI conditioning limits GvHD and yields T-cells tolerant to host antigen.
Assuntos
Cloridrato de Bendamustina/farmacologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Tirosina Quinase 3 Semelhante a fms/imunologia , Animais , Apoptose/imunologia , Células Dendríticas/metabolismo , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Condicionamento Pré-Transplante/métodos , Tirosina Quinase 3 Semelhante a fms/metabolismoRESUMO
Bendamustine (BEN) is a unique alkylating agent with efficacy against a broad range of hematological malignancies, although investigations have only recently started to delve into its immunomodulatory effects. These immunomodulatory properties of BEN in the context of hematopoietic cell transplantation (HCT) are reviewed here. Pre- and post-transplant use of BEN in multiple murine models have consistently resulted in reduced GvHD and enhanced GvL, with significant changes to key immunological cell populations, including T-cells, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs). Further, in vitro studies find that BEN enhances the suppressive function of MDSCs, skews DCs toward cDC1s, enhances Flt3 expression on DCs, increases B-cell production of IL-10, inhibits STAT3 activation, and suppresses proliferation of T- and B-cells. Overall, BEN has a broad range of immunomodulatory effects that, as they are further elucidated, may be exploited to improve clinical outcomes. As such, clinical trials are currently underway investigating new potential applications of BEN in the setting of allogeneic HCT.
RESUMO
Graft-versus-host disease (GvHD) remains the second leading cause of death in allogeneic hematopoietic stem cell transplantation recipients, highlighting the need for improved preventative strategies. Our laboratory has previously demonstrated in an experimental bone marrow transplantation (BMT) model that bendamustine combined with total body irradiation (BEN+TBI) is a safer alternative to cyclophosphamide with TBI (CY+TBI). The biological mechanisms of action of BEN have not been fully elucidated and likely involve multiple cell populations. Host dendritic cells (DCs) can prime naïve donor T-cells immediately following transplantation, making host DCs critical for the initiation phase of GvHD. We hypothesized that BEN+TBI conditioning favorably alters host DC composition to reduce GvHD. We demonstrate that host DCs treated with BEN+TBI induce less allogeneic T-cell proliferation than those conditioned with CY+TBI. We further show that BEN+TBI conditioning results in greater total numbers of all host DC subsets but with a more favorable composition compared to CY+TBI with significantly larger proportions of type 1 conventional DCs (cDC1), a highly regulatory DC subset capable of suppressing GvHD. Our studies using recipient Batf3 KO mice indicate that CD8α+ cDC1s are largely dispensable for the reduced GvHD following BEN+TBI conditioning. We found a higher frequency of host pre-cDC1s with BEN+TBI conditioning in both wild-type (WT) and Batf3 KO mice, which was inversely associated with GvHD. Additionally, we observed that BEN treatment results in greater expression of Flt3 receptor (CD135) on host DCs compared to CY, potentially contributing to the skewing of host DCs toward cDC1s. Further, BEN+TBI conditioning results in host cDCs with greater expression of PIR-B, an inhibitory receptor capable of preventing lethal GvHD. We conclude that BEN+TBI is a safer alternative to CY+TBI, resulting in a greater frequency of host pre-cDC1s and limiting GvHD.
Assuntos
Cloridrato de Bendamustina/farmacologia , Células Dendríticas/efeitos dos fármacos , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Condicionamento Pré-Transplante/métodos , Aloenxertos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/efeitos da radiação , Camundongos , Proteínas Repressoras/metabolismo , Irradiação Corporal TotalRESUMO
Graft-versus-host disease (GvHD) remains a significant impediment to allogeneic hematopoietic cell transplantation (HCT) success, necessitating studies focused on alleviating GvHD, while preserving the graft-versus-leukemia (GvL) effect. Based on our previous studies showing bendamustine with total body irradiation (BEN-TBI) conditioning reduces GvHD compared to the current clinical standard of care cyclophosphamide (CY)-TBI in a murine MHC-mismatched bone marrow transplantation (BMT) model, this study aimed to evaluate the role and fate of donor T-cells following BEN-TBI conditioning. We demonstrate that BEN-TBI reduces GvHD compared to CY-TBI independently of T regulatory cells (Tregs). BEN-TBI conditioned mice have a smaller proportion and less activated donor T-cells, with lower CD47 expression, early post-transplant, but no sustained phenotypic differences in T-cells. In BEN-TBI conditioned mice, donor T-cells gain tolerance specific to host MHC antigens. Though these T-cells are tolerant to host antigens, we demonstrate that BEN-TBI preserves a T-cell-dependent GvL effect. These findings indicate that BEN-TBI conditioning reduces GvHD without compromising GvL, warranting its further investigation as a potentially safer and more efficacious clinical alternative to CY-TBI.
Assuntos
Cloridrato de Bendamustina , Efeito Enxerto vs Leucemia , Linfócitos T , Condicionamento Pré-Transplante , Irradiação Corporal Total , Animais , Cloridrato de Bendamustina/farmacologia , Feminino , Doença Enxerto-Hospedeiro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/efeitos da radiaçãoRESUMO
Graft-versus-host disease (GVHD) remains a significant challenge in allogeneic hematopoietic cell transplantation (HCT). An underinvestigated strategy to reduce GVHD is the modification of the preparative conditioning regimen. In the present study, we aimed to evaluate GVHD associated with bendamustine (BEN) conditioning in conjunction with total body irradiation (TBI) as an alternative to the standard myeloablative regimen of cyclophosphamide (CY) and TBI. We demonstrate that BEN-TBI conditioning, although facilitating complete donor chimerism, results in significantly less GVHD compared with CY-TBI. In BEN-TBI-conditioned mice, suppressive CD11b+Gr-1high myeloid cells are increased in the blood, bone marrow, spleen, and intestines. When Gr-1high cells are depleted before transplantation, the beneficial effects of BEN-TBI are partially lost. Alternatively, administration of granulocyte colony-stimulating factor, which promotes CD11b+Gr-1+ myeloid cell expansion, is associated with a trend toward increased survival in BEN-TBI-conditioned mice. These findings indicate a potential role of myeloid-derived suppressor cells in the mechanism by which BEN allows engraftment with reduced GVHD. BEN-TBI conditioning may present a safer alternative to CY-TBI conditioning for allogeneic HCT.
Assuntos
Cloridrato de Bendamustina/uso terapêutico , Doença Enxerto-Hospedeiro/prevenção & controle , Células Supressoras Mieloides/citologia , Condicionamento Pré-Transplante/métodos , Irradiação Corporal Total , Animais , Contagem de Células , Terapia Combinada/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/efeitos da radiaçãoRESUMO
Multiple adult female CB6F1 mice presented with supernumerary incisors after preconditioning with chemotherapy and total body irradiation for bone marrow transplantation (BMT). Mice received nonmyeloablative total body irradiation (3 Gy) and either cyclophosphamide or bendamustine, followed by BMT and posttransplantation cyclophosphamide or bendamustine. Here we describe the clinical presentation, µCT findings, and histopathologic evaluation of the affected mice. These analyses confirmed the gross diagnosis and revealed details of the abnormal tooth morphology. We surmise that the combination of total body irradiation and chemotherapy resulted in the abnormal formation of supernumerary incisors. Supernumerary teeth should be considered as a potential confounding factor in tracking weight loss after BMT. These conditions can be managed to allow animals to reach their intended scientific endpoint.
Assuntos
Imunossupressores/efeitos adversos , Incisivo/diagnóstico por imagem , Doenças dos Roedores/etiologia , Dente Supranumerário/veterinária , Irradiação Corporal Total/efeitos adversos , Animais , Cloridrato de Bendamustina/efeitos adversos , Cloridrato de Bendamustina/uso terapêutico , Transplante de Medula Óssea/veterinária , Ciclofosfamida/efeitos adversos , Ciclofosfamida/uso terapêutico , Feminino , Imunossupressores/uso terapêutico , Camundongos , Doenças dos Roedores/diagnóstico por imagem , Dente Supranumerário/etiologiaRESUMO
Myeloid-derived suppressor cells (MDSCs) are CD11b+Gr1+ cells that induce T-cell hyporesponsiveness, thus impairing antitumor immunity. We have previously reported that disruption of Pak2, a member of the p21-activated kinases (Paks), in hematopoietic stem/progenitor cells (HSPCs) induces myeloid lineage skewing and expansion of CD11bhighGr1high cells in mice. In this study, we confirmed that Pak2-KO CD11bhighGr1high cells suppressed T-cell proliferation, consistent with an MDSC phenotype. Loss of Pak2 function in HSPCs led to (1) increased hematopoietic progenitor cell sensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, (2) increased MDSC proliferation, (3) decreased MDSC sensitivity to both intrinsic and Fas-Fas ligand-mediated apoptosis, and (4) promotion of MDSCs by Pak2-deficient CD4+ T cells that produced more interferon γ, tumor necrosis factor α, and GM-CSF. Pak2 disruption activated STAT5 while downregulating the expression of IRF8, a well-described myeloid transcription factor. Together, our data reveal a previously unrecognized role of Pak2 in regulating MDSC development via both cell-intrinsic and extrinsic mechanisms. Our findings have potential translational implications, as the efficacy of targeting Paks in cancer therapeutics may be undermined by tumor escape from immune control and/or acceleration of tumorigenesis through MDSC expansion.
RESUMO
Advances in haploidentical bone marrow transplantation (h-BMT) have drastically broadened the treatment options for patients requiring BMT. The possibility of significantly reducing the complications resulting from graft-versus-host disease (GvHD) with the administration of post-transplant cyclophosphamide (PT-CY) has substantially improved the efficacy and applicability of T cell-replete h-BMT. However, higher frequency of disease recurrence remains a major challenge in h-BMT with PT-CY. There is a critical need to identify novel strategies to prevent GvHD while sparing the graft-versus-leukaemia (GvL) effect in h-BMT. To this end, we evaluated the impact of bendamustine (BEN), given post-transplant, on GvHD and GvL using clinically relevant murine h-BMT models. We provide results indicating that post-transplant bendamustine (PT-BEN) alleviates GvHD, significantly improving survival, while preserving engraftment and GvL effects. We further document that PT-BEN can mitigate GvHD even in the absence of Treg. Our results also indicate that PT-BEN is less myelosuppressive than PT-CY, significantly increasing the number and proportion of CD11b(+) Gr-1(hi) cells, while decreasing lymphoid cells. In vitro we observed that BEN enhances the suppressive function of myeloid-derived suppressor cells (MDSCs) while impairing the proliferation of T- and B-cells. These results advocate for the consideration of PT-BEN as a new therapeutic platform for clinical implementation in h-BMT.