Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 178, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886845

RESUMO

BACKGROUND: Bone marrow stromal cells (BMSCs) are highly heterogeneous, which may reflect their diverse biological functions, including tissue maintenance, haematopoietic support and immune control. The current understanding of the mechanisms that drive the onset and resolution of heterogeneity, and how BMSCs influence other cells in their environment is limited. Here, we determined how the secretome and importantly the extracellular matrix of BMSCs can influence cellular phenotype. METHODS: We used two immortalised clonal BMSC lines isolated from the same heterogeneous culture as model stromal subtypes with distinct phenotypic traits; a multipotent stem-cell-like stromal line (Y201) and a nullipotent non-stem cell stromal line (Y202), isolated from the same donor BMSC pool. Label-free quantitative phase imaging was used to track cell morphology and migration of the BMSC lines over 96 h in colony-forming assays. We quantified the secreted factors of each cell line by mass spectrometry and confirmed presence of proteins in human bone marrow by immunofluorescence. RESULTS: Transfer of secreted signals from a stem cell to a non-stem cell resulted in a change in morphology and enhanced migration to more closely match stem cell-like features. Mass spectrometry analysis revealed a significant enrichment of extracellular matrix (ECM) proteins in the Y201 stem cell secretome compared to Y202 stromal cells. We confirmed that Y201 produced a more robust ECM in culture compared to Y202. Growth of Y202 on ECM produced by Y201 or Y202 restored migration and fibroblastic morphology, suggesting that it is the deficiency of ECM production that contributes to its phenotype. The proteins periostin and aggrecan, were detected at 71- and 104-fold higher levels in the Y201 versus Y202 secretome and were subsequently identified by immunofluorescence at rare sites on the endosteal surfaces of mouse and human bone, underlying CD271-positive stromal cells. These proteins may represent key non-cellular components of the microenvironment for bona-fide stem cells important for cell maintenance and phenotype in vivo. CONCLUSIONS: We identified plasticity in BMSC morphology and migratory characteristics that can be modified through secreted proteins, particularly from multipotent stem cells. Overall, we demonstrate the importance of specific ECM proteins in co-ordination of cellular phenotype and highlight how non-cellular components of the BMSC microenvironment may provide insights into cell population heterogeneity and the role of BMSCs in health and disease.


Assuntos
Matriz Extracelular , Células-Tronco Mesenquimais , Fenótipo , Humanos , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Células Estromais/metabolismo , Células Estromais/citologia , Linhagem Celular
2.
Cancer Discov ; 13(2): 364-385, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36351055

RESUMO

A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFß stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE: We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Medula Óssea , Neoplasias Hematológicas , Humanos , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Organoides , Microambiente Tumoral
3.
Front Immunol ; 13: 903796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734183

RESUMO

Heterogeneity of bone marrow mesenchymal stromal cells (MSCs, frequently referred to as "mesenchymal stem cells") clouds biological understanding and hampers their clinical development. In MSC cultures most commonly used in research and therapy, we have identified an MSC subtype characterized by CD317 expression (CD317pos (29.77 ± 3.00% of the total MSC population), comprising CD317dim (28.10 ± 4.60%) and CD317bright (1.67 ± 0.58%) MSCs) and a constitutive interferon signature linked to human disease. We demonstrate that CD317pos MSCs induced cutaneous tissue damage when applied a skin explant model of inflammation, whereas CD317neg MSCs had no effect. Only CD317neg MSCs were able to suppress proliferative cycles of activated human T cells in vitro, whilst CD317pos MSCs increased polarization towards pro-inflammatory Th1 cells and CD317neg cell lines did not. Using an in vivo peritonitis model, we found that CD317neg and CD317pos MSCs suppressed leukocyte recruitment but only CD317neg MSCs suppressed macrophage numbers. Using MSC-loaded scaffolds implanted subcutaneously in immunocompromised mice we were able to observe tissue generation and blood vessel formation with CD317neg MSC lines, but not CD317pos MSC lines. Our evidence is consistent with the identification of an immune stromal cell, which is likely to contribute to specific physiological and pathological functions and influence clinical outcome of therapeutic MSCs.


Assuntos
Células-Tronco Mesenquimais , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais , Células Estromais , Células Th1
4.
Blood ; 139(4): 483-491, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34587234

RESUMO

Megakaryocytes (MKs), the largest of the hematopoietic cells, are responsible for producing platelets by extending and depositing long proplatelet extensions into the bloodstream. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells (HSCs) along the myeloid branch of hematopoiesis. However, recent studies suggest that MKs can be generated from multiple pathways, some of which do not require transit through multipotent or bipotent MK-erythroid progenitor stages in steady-state and emergency conditions. Growing evidence suggests that these emergency conditions are due to stress-induced molecular changes in the bone marrow (BM) microenvironment, also called the BM niche. These changes can result from insults that affect the BM cellular composition, microenvironment, architecture, or a combination of these factors. In this review, we explore MK development, focusing on recent studies showing that MKs can be generated from multiple divergent pathways. We highlight how the BM niche may encourage and alter these processes using different mechanisms of communication, such as direct cell-to-cell contact, secreted molecules (autocrine and paracrine signaling), and the release of cellular components (eg, extracellular vesicles). We also explore how MKs can actively build and shape the surrounding BM niche.


Assuntos
Medula Óssea/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Nicho de Células-Tronco , Animais , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/metabolismo
5.
Blood Adv ; 5(23): 4877-4889, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34428275

RESUMO

Immune thrombocytopenia (ITP) is an acquired autoimmune condition characterized by both reduced platelet production and the destruction of functionally normal platelets by sustained attack from the immune system. However, the effect of prolonged ITP on the more immature hematopoietic progenitors remains an open area of investigation. By using a murine in vivo model of extended ITP, we revealed that ITP progression drives considerable progenitor expansion and bone marrow (BM) remodeling. Single-cell assays using Lin-Sca1+c-Kit+CD48-CD150+ long-term hematopoietic stem cells (LT-HSCs) revealed elevated LT-HSC activation and proliferation in vitro. However, the increased activation did not come at the expense of LT-HSC functionality as measured by in vivo serial transplantations. ITP progression was associated with considerable BM vasodilation and angiogenesis, as well as a twofold increase in the local production of CXCL12, a cytokine essential for LT-HSC function and BM homing expressed at high levels by LepR+ BM stromal cells. This was associated with a 1.5-fold increase in LepR+ BM stromal cells and a 5.5-fold improvement in progenitor homing to the BM. The increase in stromal cells was transient and reverted back to baseline after platelet count returned to normal, but the vasculature changes in the BM persisted. Together, our data demonstrate that LT-HSCs expand in response to ITP and that LT-HSC functionality during sustained hematopoietic stress is maintained through an adapting BM microenvironment.


Assuntos
Medula Óssea , Púrpura Trombocitopênica Idiopática , Animais , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL
6.
Elife ; 72018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29966586

RESUMO

Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Dipeptídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Hexanóis/metabolismo , Odorantes/análise , Staphylococcus hominis/metabolismo , Ácidos Sulfanílicos/metabolismo , Axila/microbiologia , Axila/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Biotransformação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Dipeptídeos/química , Hexanóis/química , Humanos , Cinética , Modelos Moleculares , Odorantes/prevenção & controle , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus hominis/genética , Especificidade por Substrato , Ácidos Sulfanílicos/química , Suor/química , Suor/metabolismo , Suor/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA