Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 324, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485785

RESUMO

Typical multiomics studies employ separate methods for DNA, RNA, and protein sample preparation, which is labor intensive, costly, and prone to sampling bias. We describe a method for preparing high-quality, sequencing-ready DNA and RNA, and either intact proteins or mass-spectrometry-ready peptides for whole proteome analysis from a single sample. This method utilizes a reversible protein tagging scheme to covalently link all proteins in a lysate to a bead-based matrix and nucleic acid precipitation and selective solubilization to yield separate pools of protein and nucleic acids. We demonstrate the utility of this method to compare the genomes, transcriptomes, and proteomes of four triple-negative breast cancer cell lines with different degrees of malignancy. These data show the involvement of both RNA and associated proteins, and protein-only dependent pathways that distinguish these cell lines. We also demonstrate the utility of this multiomics workflow for tissue analysis using mouse brain, liver, and lung tissue.


Assuntos
Multiômica , RNA , Animais , Camundongos , DNA/genética , Espectrometria de Massas/métodos , Proteoma/metabolismo , RNA/genética
2.
Kidney Int Rep ; 9(2): 370-382, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344713

RESUMO

Introduction: Antibrush border antibody disease (ABBA) is an autoimmune tubulointerstitial kidney disease that primarily affects older individuals and results in progressive kidney failure. It is rare with only 20 reported cases. Here, we describe a case series to further define the clinicopathologic spectrum and natural history, and to inform management. Methods: We identified 67 patients with ABBA who underwent kidney biopsy, including 65 native and 2 transplants. Demographics, clinical findings, and laboratory data were obtained. Histopathologic data included light microscopy, immunofluorescence, electron microscopy and immunostaining for LRP2, CUBN, and AMN. Follow-up data, including treatment(s), laboratory values, and outcomes, were available from 51 patients. Results: Patients with ABBA were predominantly male with a median age of 72 years. Median serum creatinine was 2.7 mg/dl, proteinuria was 2.8 g/day, and hematuria was present in two-thirds of the patients. Tubular injury with LRP2-positive tubular basement membrane (TBM) deposits were seen in 94.2% of patients. Thirty-eight patients (56.7%) had a second kidney disease, commonly glomerular diseases with high-grade proteinuria. These diseases included podocytopathies, membranous nephropathy (MN), IgA nephropathy, diabetic glomerulopathy, lupus nephritis (LN), crescentic glomerulonephritis (GN), tubulointerstitial nephritis, and involvement by lymphoma. The majority of patients were treated with immunosuppression. Of those patients with follow-up, 29.4% achieved remission, 70.6% had no response, and 52.8% required dialysis or were deceased. Untreated patients were at the highest risk. Conclusion: ABBA is a rare autoimmune kidney disease that often occurs with other kidney diseases. Although the overall prognosis of ABBA is poor, there is potential benefit from immunosuppression.

3.
Mol Omics ; 20(1): 37-47, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782107

RESUMO

Dietary methionine restriction is associated with a reduction in tumor growth in preclinical studies and an increase in lifespan in animal models. The mechanism by which methionine restriction inhibits tumor growth while sparing normal cells is incompletely understood. We do know that normal cells can utilize methionine or homocysteine interchangeably (methionine independence) while most cancer cells are strictly dependent on methionine availability. Here, we compared a typical methionine dependent and a rare methionine independent melanoma cell line. We show that replacing methionine, a methyl donor, with its precursor homocysteine generally induced hypomethylation in gene promoters. This decrease was similar in methionine dependent and methionine independent cells. There was only a low level of pathway enrichment, suggesting that the hypomethylation is generalized rather than gene specific. Whole proteome and transcriptome were also analyzed. This analysis revealed that contrarily to the effect on methylation, the replacement of methionine with homocysteine had a much greater effect on the transcriptome and proteome of methionine dependent cells than methionine independent cells. Interestingly, methionine adenosyltransferase 2A (MAT2A), responsible for the synthesis of S-adenosylmethionine from methionine, was equally strongly upregulated in both cell lines. This suggests that the absence of methionine is equally detected but triggers different outcomes in methionine dependent versus independent cells. Our analysis reveals the importance of cell cycle control, DNA damage repair, translation, nutrient sensing, oxidative stress and immune functions in the cellular response to methionine stress in melanoma.


Assuntos
Melanoma , Metionina , Animais , Metionina/metabolismo , Melanoma/genética , Proteoma , S-Adenosilmetionina/metabolismo , Racemetionina , Homocisteína
4.
Mol Cancer Ther ; 23(3): 316-329, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37816504

RESUMO

Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma Difuso de Grandes Células B , Linfoma , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Relacionadas a NIMA/genética , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
5.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066392

RESUMO

Dietary methionine restriction is associated with a reduction in tumor growth in preclinical studies and an increase in lifespan in animal models. The mechanism by which methionine restriction inhibits tumor growth while sparing normal cells is incompletely understood. We do know that normal cells can utilize methionine or homocysteine interchangeably (methionine independence) while most cancer cells are strictly dependent on methionine availability. Here, we compared a typical methionine dependent and a rare methionine independent melanoma cell line. We show that replacing methionine, a methyl donor, with its precursor homocysteine generally induced hypomethylation in gene promoters. This decrease was similar in methionine dependent and methionine independent cells. There was only a low level of pathway enrichment, suggesting that the hypomethylation is generalized rather than gene specific. Whole proteome and transcriptome were also analyzed. This analysis revealed that contrarily to the effect on methylation, the replacement of methionine with homocysteine had a much greater effect on the transcriptome and proteome of methionine dependent cells than methionine independent cells. Interestingly, methionine adenosyltransferase 2A (MAT2A), responsible for the synthesis of s-adenosylmethionine from methionine, was equally strongly upregulated in both cell lines. This suggests that the absence of methionine is equally detected but triggers different outcomes in methionine dependent versus independent cells. Our analysis reveals the importance of cell cycle control, DNA damage repair, translation, nutrient sensing, oxidative stress and immune functions in the cellular response to methionine stress in melanoma.

6.
Kidney Int ; 104(2): 343-352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119877

RESUMO

Drugs are an important secondary cause of membranous nephropathy (MN) with the most common drugs associated with MN being nonsteroidal anti-inflammatory drugs (NSAIDs). Since the target antigen in NSAID-associated MN is not known, we performed laser microdissection of glomeruli followed by mass spectrometry (MS/MS) in 250 cases of PLA2R-negative MN to identify novel antigenic targets. This was followed by immunohistochemistry to localize the target antigen along the glomerular basement membrane and western blot analyses of eluates of frozen biopsy tissue to detect binding of IgG to the novel antigenic target. MS/MS studies revealed high total spectral counts of a novel protein Proprotein Convertase Subtilisin/Kexin Type 6 (PCSK 6) in five of the 250 cases in the discovery cohort. A validation cohort using protein G immunoprecipitation, MS/MS, and immunofluorescence detected PCSK6 in eight additional cases. All cases were negative for known antigens. Ten of 13 cases had a history of heavy NSAID use with no history available in one case. The mean serum creatinine and proteinuria at kidney biopsy were 0.93 ± 0.47 mg/dL and 6.5 ± 3.3 gms/day, respectively. Immunohistochemistry/immunofluorescence showed granular staining for PCSK6 along the glomerular basement membrane, and confocal microscopy showed co-localization of IgG and PCSK6. IgG subclass analysis in three cases revealed codominance of IgG1 and IgG4. Western blot analysis using eluates from frozen tissue showed IgG binding to PCSK6 in PCSK6-associated but not in PLA2R-positive MN. Thus, PCSK6 may be a likely novel antigenic target in MN in patients with prolonged NSAID use.


Assuntos
Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/diagnóstico , Espectrometria de Massas em Tandem , Membrana Basal Glomerular/patologia , Imunoglobulina G , Pró-Proteína Convertases , Anti-Inflamatórios , Subtilisinas , Receptores da Fosfolipase A2 , Serina Endopeptidases
7.
Kidney Int ; 103(3): 593-606, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638888

RESUMO

Multiple autoantigens have been identified in membranous nephropathy (MN) by tissue-based proteomics. However, antigenic targets of disease are unknown for over 10% of patients with MN and over half of those with membranous lupus nephritis (MLN). Here, we identified multiple new targets in PLA2R-/THSD7A-/EXT-/NELL1-quadruple negative MN biopsies through mass spectrometry of immune complexes recovered from biopsy tissue of patients with MN. Patients with MN negative for these four antigens were identified from Arkana Laboratories case archives. Protein G immunoprecipitation recovered immune complexes from frozen biopsy tissue from 142 quadruple-negative cases and 278 cases of known antigen type, followed by interrogation by mass spectrometry. Potential putative antigens were confirmed through paraffin immunofluorescence and co-localization with IgG within immune deposits. Consecutive series of 165 cases of PLA2R-negative MN and 142 MLN biopsies were screened to determine the frequency for each potential antigen. Seven putative antigens were discovered within immune complexes from biopsies of patients with MN including FCN3, CD206, EEA1, SEZ6L2, NPR3, MST1, and VASN. Peptides from these proteins were not enriched in the 278 cases of known antigen type. Between three to 30 unique peptides were detected for each new target. Frequencies of each biomarker, determined by staining consecutive case series, ranged from under 1 to 4.9%. NPR3 and CD206 were only positive in index cases. All cases showed co-localization of IgG within the immune deposits. Thus, seven putative antigens were newly identified in MN and MLN. Due to the number of antigens identified, it is becoming impractical to type PLA2R-negative MN or MLN cases through immunostaining alone. A multiplex approach is needed for subtyping of these diseases.


Assuntos
Glomerulonefrite Membranosa , Nefrite Lúpica , Humanos , Complexo Antígeno-Anticorpo , Espectrometria de Massas , Imunoglobulina G , Autoanticorpos , Receptores da Fosfolipase A2 , Proteínas de Membrana
8.
Oncogene ; 41(24): 3328-3340, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525905

RESUMO

WD repeat domain 5 (WDR5), an integral component of the MLL/KMT2A lysine methyltransferase complex, is critically involved in oncogenesis and represents an attractive onco-target. Inhibitors targeting protein-protein interactions (PPIs) between WDR5 and its binding partners, however, do not inhibit all of WDR5-mediated oncogenic functions and exert rather limited antitumor effects. Here, we report a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs):CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IKZF3. MS40-induced WDR5 degradation caused disassociation of the MLL/KMT2A complex off chromatin, resulting in decreased H3K4me2. Transcriptomic profiling revealed that targets of both WDR5 and IMiDs:CRBN were significantly repressed by treatment of MS40. In MLL-rearranged leukemias, which exhibit IKZF1 high expression and dependency, co-suppression of WDR5 and Ikaros by MS40 is superior in suppressing oncogenesis to the WDR5 PPI inhibitor, to MS40's non-PROTAC analog controls (MS40N1 and MS40N2, which do not bind CRBN and WDR5, respectively), and to a matched VHL-based WDR5 PROTAC (MS169, which degrades WDR5 but not Ikaros). MS40 suppressed the growth of primary leukemia patient cells in vitro and patient-derived xenografts in vivo. Thus, dual degradation of WDR5 and Ikaros is a promising anti-cancer strategy.


Assuntos
Fator de Transcrição Ikaros , Peptídeos e Proteínas de Sinalização Intracelular , Ubiquitina-Proteína Ligases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Carcinogênese , Fator de Transcrição Ikaros/antagonistas & inibidores , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Cell Chem Biol ; 29(3): 386-397.e9, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469831

RESUMO

Nuclear receptor binding SET domain protein 3 (NSD3), a gene located within the 8p11-p12 amplicon frequently detected in human cancers, encodes a chromatin modulator and an attractive onco-target. However, agents that effectively suppress NSD3-mediated oncogenic actions are currently lacking. We report the NSD3-targeting proteolysis targeting chimera (PROTAC), MS9715, which achieves effective and specific targeting of NSD3 and associated cMyc node in tumor cells. MS9715 is designed by linking BI-9321, a NSD3 antagonist, which binds NSD3's PWWP1 domain, with an E3 ligase VHL ligand. Importantly, MS9715, but not BI-9321, effectively suppresses growth of NSD3-dependent hematological cancer cells. Transcriptomic profiling demonstrates that MS9715, but not BI-9321, effectively suppresses NSD3-and cMyc-associated gene expression programs, resembling effects of the CRISPR-Cas9-mediated knockout of NSD3. Collectively, these results suggest that pharmacological degradation of NSD3 as an attractive therapeutic strategy, which co-suppresses NSD3- and cMyc-related oncogenic nodes, is superior to blocking the PWWP1 domain of NSD3.


Assuntos
Antineoplásicos , Neoplasias , Proteólise , Humanos , Antineoplásicos/farmacologia
10.
ACS Omega ; 6(38): 24949-24959, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604676

RESUMO

Microtubule targeting agents (MTAs) have been used for the treatment of cancer for many decades and are among the most successful chemotherapeutic agents. However, their application and effectiveness are limited because of toxicity and resistance as well as a lack of knowledge of molecular mechanisms downstream of microtubule inhibition. Insights into key pathways that link microtubule disruption to cell death is critical for optimal use of these drugs, for defining biomarkers useful in patient stratification, and for informed design of drug combinations. Although MTAs characteristically induce death in mitosis, microtubule destabilizing agents such as vincristine also induce death directly in G1 phase in primary acute lymphoblastic leukemia (ALL) cells. Because many signaling pathways regulating cell survival and death involve changes in protein expression and phosphorylation, we undertook a comprehensive quantitative proteomic study of G1 phase ALL cells treated with vincristine. The results revealed distinct alterations associated with c-Jun N-terminal kinase signaling, anti-proliferative signaling, the DNA damage response, and cytoskeletal remodeling. Signals specifically associated with cell death were identified by pre-treatment with the CDK4/6 inhibitor palbociclib, which caused G1 arrest and precluded death induction. These results provide insights into signaling mechanisms regulating cellular responses to microtubule inhibition and provide a foundation for a better understanding of the clinical mechanisms of MTAs and for the design of novel drug combinations. The mass spectrometry proteomics data have been deposited to the PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) via the PRIDE partner repository with the data set identifier PXD027190 and 10.6019/PXD027190.

11.
Nature ; 595(7868): 591-595, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163069

RESUMO

The development of cancer is intimately associated with genetic abnormalities that target proteins with intrinsically disordered regions (IDRs). In human haematological malignancies, recurrent chromosomal translocation of nucleoporin (NUP98 or NUP214) generates an aberrant chimera that invariably retains the nucleoporin IDR-tandemly dispersed repeats of phenylalanine and glycine residues1,2. However, how unstructured IDRs contribute to oncogenesis remains unclear. Here we show that IDRs contained within NUP98-HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias1,2, are essential for establishing liquid-liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. Notably, LLPS of NUP98-HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad 'super-enhancer'-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein3,4, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. Deeply sequenced Hi-C revealed that phase-separated NUP98-HOXA9 induces CTCF-independent chromatin loops that are enriched at proto-oncogenes. Together, this report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumourous transformation. As LLPS-competent molecules are frequently implicated in diseases1,2,4-7, this mechanism can potentially be generalized to many malignant and pathological settings.


Assuntos
Cromatina/genética , Proteínas de Homeodomínio/genética , Proteínas Intrinsicamente Desordenadas/genética , Neoplasias/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética , Animais , Carcinogênese , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Ativação Transcricional
12.
J Am Soc Nephrol ; 32(7): 1666-1681, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33952630

RESUMO

BACKGROUND: Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. METHODS: A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. RESULTS: These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. CONCLUSIONS: Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.

13.
BMC Bioinformatics ; 22(1): 275, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039258

RESUMO

BACKGROUND: Histone post-translational modifications (PTMs) play an important role in our system by regulating the structure of chromatin and therefore contribute to the regulation of gene and protein expression. Irregularities in histone PTMs can lead to a variety of different diseases including various forms of cancer. Histone modifications are analyzed using high resolution mass spectrometry, which generate large amounts of data that requires sophisticated bioinformatics tools for analysis and visualization. PTMViz is designed for downstream differential abundance analysis and visualization of both protein and/or histone modifications. RESULTS: PTMViz provides users with data tables and visualization plots of significantly differentiated proteins and histone PTMs between two sample groups. All the data is packaged into interactive data tables and graphs using the Shiny platform to help the user explore the results in a fast and efficient manner to assess if changes in the system are due to protein abundance changes or epigenetic changes. In the example data provided, we identified several proteins differentially regulated in the dopaminergic pathway between mice treated with methamphetamine compared to a saline control. We also identified histone post-translational modifications including histone H3K9me, H3K27me3, H4K16ac, and that were regulated due to drug exposure. CONCLUSIONS: Histone modifications play an integral role in the regulation of gene expression. PTMViz provides an interactive platform for analyzing proteins and histone post-translational modifications from mass spectrometry data in order to quickly identify differentially expressed proteins and PTMs.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Animais , Cromatina , Código das Histonas , Histonas/metabolismo , Metilação , Camundongos
14.
Nucleic Acids Res ; 49(9): 4971-4988, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33849067

RESUMO

Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fosfofrutoquinase-1 Tipo C/genética , Neoplasias de Próstata Resistentes à Castração/genética , Fator de Transcrição YY1/metabolismo , Animais , Carcinogênese , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Glicólise , Células HEK293 , Humanos , Masculino , Camundongos SCID , Fosfofrutoquinase-1 Tipo C/fisiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/fisiologia
15.
Nat Commun ; 12(1): 1045, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594072

RESUMO

Recurring chromosomal translocation t(10;17)(p15;q21) present in a subset of human acute myeloid leukemia (AML) patients creates an aberrant fusion gene termed ZMYND11-MBTD1 (ZM); however, its function remains undetermined. Here, we show that ZM confers primary murine hematopoietic stem/progenitor cells indefinite self-renewal capability ex vivo and causes AML in vivo. Genomics profilings reveal that ZM directly binds to and maintains high expression of pro-leukemic genes including Hoxa, Meis1, Myb, Myc and Sox4. Mechanistically, ZM recruits the NuA4/Tip60 histone acetyltransferase complex to cis-regulatory elements, sustaining an active chromatin state enriched in histone acetylation and devoid of repressive histone marks. Systematic mutagenesis of ZM demonstrates essential requirements of Tip60 interaction and an H3K36me3-binding PWWP (Pro-Trp-Trp-Pro) domain for oncogenesis. Inhibitor of histone acetylation-'reading' bromodomain proteins, which act downstream of ZM, is efficacious in treating ZM-induced AML. Collectively, this study demonstrates AML-causing effects of ZM, examines its gene-regulatory roles, and reports an attractive mechanism-guided therapeutic strategy.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Correpressoras/química , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Leucemia Mieloide Aguda/patologia , Lisina Acetiltransferase 5/metabolismo , Acetilação , Animais , Carcinogênese , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Regulação Leucêmica da Expressão Gênica , Genoma Humano , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/metabolismo
16.
Kidney360 ; 2(8): 1275-1286, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35369660

RESUMO

Background: Membranous lupus nephritis (MLN) comprises 10%-15% of lupus nephritis and increases morbidity and mortality of patients with SLE through complications of nephrotic syndrome and chronic kidney failure. Identification of the target antigens in MLN may enable noninvasive monitoring of disease activity, inform treatment decisions, and aid in prognostication, as is now possible for idiopathic MN caused by antibodies against the phospholipase A2 receptor. Here, we show evidence for type III TGF-ß receptor (TGFBR3) as a novel biomarker expressed in a subset of patients with MLN. Methods: Mass spectrometry was used for protein discovery through enrichment of glomerular proteins by laser capture microdissection and through elution of immune complexes within MLN biopsy specimens. Colocalization with IgG within glomerular immune deposits from patients and disease controls was evaluated by confocal microscopy. Immunostaining of consecutive case series was used to determine the overall frequency in MN and MLN. Results: TGFBR3 was found to be enriched in glomeruli and coimmunoprecipitated with IgG within a subset of MLN biopsy specimens by mass spectrometry. Staining of consecutive MN cases without clinical evidence of SLE did not show TGFBR3 expression (zero of 104), but showed a 6% prevalence in MLN (11 of 199 cases). TGFBR3 colocalized with IgG along the glomerular basement membranes in TGFBR3-associated MN, but not in controls. Conclusions: Positive staining for TGFBR3 within glomerular immune deposits represents a distinct form of MN, substantially enriched in MLN. A diagnosis of TGFBR3-associated MN can alert the clinician to search for an underlying autoimmune disease.


Assuntos
Glomerulonefrite Membranosa , Membrana Basal Glomerular/patologia , Glomerulonefrite Membranosa/diagnóstico , Humanos , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta/genética
17.
Kidney Int ; 99(4): 967-976, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32828756

RESUMO

Patients with membranous nephropathy have an increased risk of malignancy compared to the general population, but the target antigen for malignancy-associated membranous nephropathy is unknown. To explore this, we utilized mass spectrometry for antigen discovery in malignancy-associated membranous nephropathy examining immune complexes eluted from frozen kidney biopsy tissue using protein G bead immunoglobulin capture. Antigen discovery was performed comparing cases of membranous nephropathy of unknown and known type. Mass spectrophotometric analysis revealed that nerve epidermal growth factor-like 1 (NELL1) immune complexes were uniquely present within the biopsy tissue in membranous nephropathy. Additional NELL1-positive cases were subsequently identified by immunofluorescence. In a consecutive series, 3.8% of PLA2R- and THSD7A-negative cases were NELL1-positive. These NELL1-positive cases had segmental to incomplete IgG capillary loop staining (93.4%) and dominant or co-dominant IgG1-subclass staining (95.5%). The mean age of patients with NELL1-positive membranous nephropathy was 66.8 years, with a slight male predominance (58.2%) and 33% had concurrent malignancy. Compared with PLA2R- and THSD7A-positive cases of membranous nephropathy, there was a greater proportion of cases with malignancies in the NELL1-associated group. Thus, NELL1-associated membranous nephropathy has a unique histopathology characterized by incomplete capillary loop staining, IgG1-predominance, and is more often associated with malignancy than other known types of membranous nephropathy.


Assuntos
Glomerulonefrite Membranosa , Neoplasias , Idoso , Autoanticorpos , Proteínas de Ligação ao Cálcio , Humanos , Imunoglobulina G , Masculino , Receptores da Fosfolipase A2 , Trombospondinas
18.
Kidney Int ; 100(1): 171-181, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33045259

RESUMO

Membranous lupus nephritis is a frequent cause of nephrotic syndrome in patients with systemic lupus erythematosus. It has been shown in phospholipase A2 receptor positive membranous nephropathy that known antibodies can be detected within sera, determination of the target autoantigen can have diagnostic significance, inform prognosis, and enable non-invasive monitoring of disease activity. Here we utilized mass spectrometry for antigen discovery in laser captured microdissected glomeruli from formalin-fixed paraffin embedded tissue and tissue protein G immunoprecipitation studies to interrogate immune complexes from frozen kidney biopsy tissue. We identified neural cell adhesion molecule 1 (NCAM1) to be a target antigen in some cases of membranous lupus nephritis and within rare cases of primary membranous nephropathy. The prevalence of NCAM1 association was 6.6% of cases of membranous lupus nephritis and in 2.0% of primary membranous nephropathy cases. NCAM1 was found to colocalize with IgG within glomerular immune deposits by confocal microscopy. Additionally, serum from patients with NCAM1-associated membranous nephropathy showed reactivity to NCAM1 recombinant protein on Western blotting and by indirect immunofluorescence assay, demonstrating the presence of circulating antibodies. Thus, we propose that NCAM1 is a target autoantigen in a subset of patients with membranous lupus nephritis. Future studies are needed to determine whether anti-NCAM1 antibody levels correlate with disease activity or response to therapy.


Assuntos
Glomerulonefrite Membranosa , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Autoantígenos , Antígeno CD56 , Glomerulonefrite Membranosa/diagnóstico , Humanos , Moléculas de Adesão de Célula Nervosa
19.
Cancer Res ; 80(21): 4707-4719, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004350

RESUMO

T-cell exhaustion in cancer is linked to poor clinical outcomes, where evidence suggests T-cell metabolic changes precede functional exhaustion. Direct competition between tumor-infiltrating lymphocytes (TIL) and cancer cells for metabolic resources often renders T cells dysfunctional. Environmental stress produces epigenome remodeling events within TIL resulting from loss of the histone methyltransferase EZH2. Here, we report an epigenetic mechanism contributing to the development of metabolic exhaustion in TIL. A multiomics approach revealed a Cdkn2a.Arf-mediated, p53-independent mechanism by which EZH2 inhibition leads to mitochondrial dysfunction and the resultant exhaustion. Reprogramming T cells to express a gain-of-function EZH2 mutant resulted in an enhanced ability of T cells to inhibit tumor growth in vitro and in vivo. Our data suggest that manipulation of T-cell EZH2 within the context of cellular therapies may yield lymphocytes that are able to withstand harsh tumor metabolic environments and collateral pharmacologic insults. SIGNIFICANCE: These findings demonstrate that manipulation of T-cell EZH2 in cellular therapies may yield cellular products able to withstand solid tumor metabolic-deficient environments. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4707/F1.large.jpg.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Epigênese Genética/fisiologia , Camundongos , Microambiente Tumoral/imunologia
20.
Mol Omics ; 16(4): 316-326, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347222

RESUMO

Quantitative proteomics generates large datasets with increasing depth and quantitative information. With the advance of mass spectrometry and increasingly larger data sets, streamlined methodologies and tools for analysis and visualization of phosphoproteomics are needed both at the protein and modified peptide levels. To assist in addressing this need, we developed ProteoViz, which includes a set of R scripts that perform normalization and differential expression analysis of both the proteins and enriched phosphorylated peptides, and identify sequence motifs, kinases, and gene set enrichment pathways. The tool generates interactive visualization plots that allow users to interact with the phosphoproteomics results and quickly identify proteins and phosphorylated peptides of interest for their biological study. The tool also links significant phosphosites with sequence motifs and pathways that will help explain the experimental conditions and guide future experiments. Here, we present the workflow and demonstrate its functionality by analyzing a phosphoproteomic data set from two lymphoma cell lines treated with kinase inhibitors. The scripts and data are freely available at and via the ProteomeXchange with identifier PXD015606.


Assuntos
Biologia Computacional/métodos , Fosfoproteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteômica , Software , Motivos de Aminoácidos , Linhagem Celular , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Ligação Proteica , Proteômica/métodos , Transdução de Sinais , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA