Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(11): 1372-1388, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38204416

RESUMO

Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-ß (Aß) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aß peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aß peptide and mutant p53 protein, a common therapeutic approach may be applicable.


Assuntos
Doença de Alzheimer , Neoplasias , Humanos , Peptídeos beta-Amiloides/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/uso terapêutico , Proteína Supressora de Tumor p53/genética , Doença de Alzheimer/metabolismo
2.
J Inorg Biochem ; 251: 112433, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043136

RESUMO

The p53 protein plays a major role in cancer prevention, and over 50% of cancer diagnoses can be attributed to p53 malfunction. p53 incorporates a structural Zn site that is required for proper protein folding and function, and in many cases point mutations can result in loss of the Zn2+ ion, destabilization of the tertiary structure, and eventual amyloid aggregation. Herein, we report a series of compounds designed to act as small molecule stabilizers of mutant p53, and feature Zn-binding fragments to chaperone Zn2+ to the metal depleted site and restore wild-type (WT) function. Many Zn metallochaperones (ZMCs) have been shown to generate intracellular reactive oxygen species (ROS), likely by chelating redox-active metals such as Fe2+/3+ and Cu+/2+ and undergoing associated Fenton chemistry. High levels of ROS can result in off-target effects and general toxicity, and thus, careful tuning of ligand Zn2+ affinity, in comparison to the affinity for other endogenous metals, is important for selective mutant p53 targeting. In this work we show that by using carboxylate donors in place of pyridine we can change the relative Zn2+/Cu2+ binding ability in a series of ligands, and we investigate the impact of donor group changes on metallochaperone activity and overall cytotoxicity in two mutant p53 cancer cell lines (NUGC3 and SKGT2).


Assuntos
Metalochaperonas , Proteína Supressora de Tumor p53 , Zinco , Humanos , Linhagem Celular Tumoral , Quelantes , Metalochaperonas/química , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Zinco/metabolismo , Ligação Proteica
3.
J Inorg Biochem ; 242: 112164, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871418

RESUMO

The p53 protein, known as the 'guardian of the genome', plays an important role in cancer prevention. Unfortunately, p53 mutations result in compromised activity with over 50% of cancers resulting from point mutations to p53. There is considerable interest in mutant p53 reactivation, with the development of small-molecule reactivators showing promise. We have focused our efforts on the common p53 mutation Y220C, which causes protein unfolding, aggregation, and can result in the loss of a structural Zn from the DNA-binding domain. In addition, the Y220C mutant creates a surface pocket that can be stabilized using small molecules. We previously reported the bifunctional ligand L5 as a Zn metallochaperone and reactivator of the p53-Y220C mutant. Herein we report two new ligands L5-P and L5-O that are designed to act as Zn metallochaperones and non-covalent binders in the Y220C mutant pocket. For L5-P the distance between the Zn-binding di-(2-picolyl)amine function and the pocket-binding diiodophenol was extended in comparison to L5, while for L5-O we extended the pocket-binding moiety via attachment of an alkyne function. While both new ligands displayed similar Zn-binding affinity to L5, neither acted as efficient Zn-metallochaperones. However, the new ligands exhibited significant cytotoxicity in the NCI-60 cell line screen as well as in the NUGC3 Y220C mutant cell line. We identified that the primary mode of cytotoxicity is likely reactive oxygen species (ROS) generation for L5-P and L5-O, in comparison to mutant p53 reactivation for L5, demonstrating that subtle changes to the ligand scaffold can change the toxicity pathway.


Assuntos
Metalochaperonas , Proteína Supressora de Tumor p53 , Metalochaperonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ligantes , Linhagem Celular Tumoral , Domínios Proteicos
4.
Curr Opin Chem Biol ; 72: 102230, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436275

RESUMO

The p53 protein plays a critical role in the prevention of genome mutations in the body, however, this protein is frequently mutated in cancer and almost all cancers exhibit malfunction along the p53 pathway. In addition to a loss of activity, mutant p53 protein is prone to unfolding and aggregation, eventually forming amyloid aggregates. There continues to be a considerable effort to develop strategies to restore normal p53 expression and activity and this review details recent advances in small-molecule stabilization of mutant p53 protein and the design of p53 aggregation inhibitors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Agregados Proteicos , Neoplasias/metabolismo , Mutação , Amiloide
5.
J Biol Inorg Chem ; 27(4-5): 393-403, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35488931

RESUMO

Metal ion dysregulation has been implicated in a number of diseases from neurodegeneration to cancer. While defective metal ion transport mechanisms are known to cause specific diseases of genetic origin, the role of metal dysregulation in many diseases has yet to be elucidated due to the complicated function (both good and bad!) of metal ions in the body. A breakdown in metal ion speciation can manifest in several ways from increased reactive oxygen species (ROS) generation to an increase in protein misfolding and aggregation. In this review, we will discuss the role of Zn in the proper function of the p53 protein in cancer. The p53 protein plays a critical role in the prevention of genome mutations via initiation of apoptosis, DNA repair, cell cycle arrest, anti-angiogenesis, and senescence pathways to avoid propagation of damaged cells. p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. Thus, there has been considerable effort dedicated to restoring normal p53 expression and activity to mutant p53. This includes understanding the relative populations of the Zn-bound and Zn-free p53 in wild-type and mutant forms, and the development of metallochaperones to re-populate the Zn binding site to restore mutant p53 activity. Parallels will be made to the development of multifunctional metal binding agents for modulating the aggregation of the amyloid-beta peptide in Alzheimer's Disease (AD).


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Química Bioinorgânica , Humanos , Metalochaperonas/metabolismo , Metais/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Zinco/química
6.
Chem Sci ; 12(21): 7510-7520, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-34163842

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aß) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aß peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1-3) alters the aggregation profile of the Aß peptide. Photoactivation of Ru1-3 results in the loss of a 6,6'-dimethyl-2,2'-bipyridyl (6,6'-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aß peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2'-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aß peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1-3 in the presence of pre-formed Aß1-42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1-3 in the presence of either monomeric or fibrillar Aß1-42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.

7.
Chem Soc Rev ; 49(19): 6995-7014, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32869798

RESUMO

Referred to as the "guardian of the genome", p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. As an overexpressed and tumour-specific target, the past two decades have seen considerable dedication to the development of small molecules that aim to restore wild-type function in mutant p53. In this review we collect and communicate the chemical principles involved in small molecule drug design for misfolded proteins in anticancer therapy. While this approach has met with significant challenges including off-target mechanisms that induce cytotoxicity independent of p53 status, major technological advancements in gene sequencing capability and a shift towards personalized medicine holds significant promise for p53 reactivating compounds and could have widespread benefits for the field of cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteína Supressora de Tumor p53/efeitos dos fármacos , Antineoplásicos/farmacologia , Humanos , Terapia de Alvo Molecular , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/genética
8.
Chem Sci ; 10(46): 10802-10814, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32055386

RESUMO

Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.

9.
Chemistry ; 24(67): 17734-17742, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230059

RESUMO

The p53 protein plays a major role in cancer prevention, and over 50 % of cancer diagnoses can be attributed to p53 malfunction. The common p53 mutation Y220C causes local protein unfolding, aggregation, and can result in a loss of Zn in the DNA-binding domain. Structural analysis has shown that this mutant creates a surface site that can be stabilized using small molecules, and herein a multifunctional approach to restore function to p53-Y220C is reported. A series of compounds has been designed that contain iodinated phenols aimed for interaction and stabilization of the p53-Y220C surface cavity, and Zn-binding fragments for metallochaperone activity. Their Zn-binding affinity was characterized using spectroscopic methods and demonstrate the ability of compounds L4 and L5 to increase intracellular levels of Zn2+ in a p53-Y220C-mutant cell line. The in vitro cytotoxicity of our compounds was initially screened by the National Cancer Institute (NCI-60), followed by testing in three stomach cancer cell lines with varying p53 status', including AGS (WTp53), MKN1 (V143A), and NUGC3 (Y220C). Our most promising ligand, L5, is nearly 3-fold more cytotoxic than cisplatin in a large number of cell lines. The impressive cytotoxicity of L5 is further maintained in a NUGC3 3D spheroid model. L5 also induces Y220C-specific apoptosis in a cleaved caspase-3 assay, reduces levels of unfolded mutant p53, and recovers p53 transcriptional function in the NUGC3 cell line. These results show that these multifunctional scaffolds have the potential to restore wild-type function in mutant p53-Y220C.


Assuntos
Complexos de Coordenação/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Microscopia de Fluorescência , Conformação Molecular , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Zinco/química , Zinco/metabolismo
10.
J Inorg Biochem ; 185: 63-70, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778927

RESUMO

With the aim to prepare hypoxia tumor imaging agents, technetium(I) and rhenium(I) tricarbonyl complexes with dipyridylamine (L1 = N-{[1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazol-4-yl]methyl}-N-(2-pyridinylmethyl)-2-pyridinemethanamine; L3 = N-{[1-[N-(4-aminosulfonylphenyl)]-1H-1,2,3-triazol-4-yl]methyl}-N-(2-pyridinyl-methyl)-2-pyridinemethanamine), and iminodiacetate (H2L2 = N-{[1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazole-4-yl]methyl}-N-(carboxy-methyl)-glycine; H2L4 = N-{[1-[N-(4-aminosulfonylphenyl)]-1H-1,2,3-triazole-4-yl]methyl}-N-(carboxymethyl)-glycine) ligands appended to sulfonamide or sulfocoumarin carbonic anhydrase inhibitors were synthesized. The Re(I) complexes were characterized using 1H/13C NMR, MS, EA, and in one case the X-ray structure of [Et3NH][Re(CO)3(L2)] was obtained. As expected, the Re coordination geometry is distorted octahedral, with a tridentate iminodiacetate ligand in a fac arrangement dictated by the three strong-field CO ligands. Inhibition studies of human carbonic anhydrases (hCAs) showed that the Re sulfocoumarin derivatives were inactive against hCA-I, -II and -IV, but had moderate affinity for hCA-IX. The Re sulfonamides showed improved affinity against all tested hCAs, with [Re(CO)3(L4)]- being the most active and selective for the hCA-IX isoform. The corresponding 99mTc complexes were synthesized from fac-[99mTc(CO)3(H2O)3]+, purified by HPLC, and obtained with average 41-76% decay-corrected radiochemical yields and with >99% radiochemical purity. Uptake in HT-29 tumors at 1 h post-injection was highest for [99mTc(CO)3(L4)]- (0.14 ±â€¯0.10%ID/g) in comparison to [99mTc(CO)3(L1)]+ (0.06 ±â€¯0.01%ID/g), [99mTc(CO)3(L2)]- (0.03 ±â€¯0.00%ID/g), and [99mTc(CO)3(L3)]+ (0.07 ±â€¯0.03%ID/g). The uptake in tumors was further reduced at 4 h post-injection. For potential imaging application with single photon emission computed tomography, further optimization is needed to improve the affinity to hCA-IX and uptake in hCA-IX expressing tumors.


Assuntos
Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Cumarínicos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Sulfonamidas/administração & dosagem , Tecnécio/administração & dosagem , Animais , Antígenos de Neoplasias/química , Anidrase Carbônica IX/química , Inibidores da Anidrase Carbônica/farmacocinética , Cumarínicos/química , Cumarínicos/farmacocinética , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Estrutura Molecular , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Sulfonamidas/química , Sulfonamidas/farmacocinética , Tecnécio/química , Tecnécio/farmacocinética , Distribuição Tecidual
11.
Metallomics ; 7(1): 129-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387614

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that is increasing worldwide due to increased life expectancy. AD is characterized by two pathological hallmarks in the brain: amyloid-ß (Aß) plaque deposits and neurofibrillary tangles. A focus of AD research has concentrated on either inhibiting Aß peptide aggregation that leads to plaque formation or breaking down pre-formed Aß peptide aggregates. An alternative approach is to modulate the Aß aggregation profile by facilitating the formation of Aß species that are off-pathway and non-toxic. Herein, we report the re-purposing of the widely studied Ru(iii) anti-cancer complex KP1019, towards regulating the aggregation profile of the Aß peptide. Using electron paramagnetic resonance (EPR) spectroscopy, we conclude that KP1019 binds to histidine residues, located at the N-terminus of the peptide, in a rapid and robust fashion. Native gels and transmission electron microscopy (TEM) analyses have provided insight into the species and structures that are generated by KP1019-Aß interactions. Finally, incubation in an in vitro human neuronal cell model has demonstrated that the formation of KP1019-Aß species rescues cell viability from Aß-associated neurotoxicity. Modulation of the Aß aggregation pathway via covalent interactions with small molecules is thus a promising AD therapeutic strategy.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Indazóis/farmacologia , Compostos Organometálicos/farmacologia , Doença de Alzheimer , Linhagem Celular Tumoral , Humanos , Compostos de Rutênio
12.
J Biol Inorg Chem ; 18(7): 831-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23925425

RESUMO

Two new rhenium complexes containing pyridine-triazole (pyta) and quinoline-triazole (quinta) ligands with attached glutamine-targeting agents have been characterized and tested for uptake in the HT-29 human colon adenocarcinoma cell line. The glutamine moiety in Re(CO)3Br(pyta) (1) and Re(CO)3Br(quinta) (2) remains pendant in solution. Both complexes exhibit absorptions in the 300-400-nm range with metal-to-ligand charge transfer (MLCT) character, as predicted by time-dependent density functional theory calculations. Geometrical analysis by theoretical calculations provides information on the cationic complexes 1 (+) and 2 (+) resulting from aquo for halide ligand exchange under aqueous conditions. The emissive properties of both complexes were studied under aqueous conditions, and the measured quantum yields were 0.46 % for 1 (+) and 0.18 % for 2 (+). The large Stokes shifts and oxygen sensitivity of the emission suggest a (3)MLCT process for both complexes. Cell studies in the HT-29 cell line demonstrate that both complexes are nontoxic over a large concentration range (0-1.4 mM). Preliminary uptake studies show that 2 (+), but not 1 (+), displays significant concentration-dependent uptake at 3 and 24 h.


Assuntos
Glutamina/química , Compostos Organometálicos/síntese química , Rênio/química , Transporte Biológico , Técnicas de Química Sintética , Células HT29 , Humanos , Modelos Moleculares , Conformação Molecular , Fenômenos Ópticos , Compostos Organometálicos/metabolismo , Compostos Organometálicos/toxicidade
13.
Bioorg Med Chem Lett ; 23(13): 3920-6, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23683595

RESUMO

Acetylene-bearing 2-[(18)F]fluoropyridines [(18)F]FPy5yne and PEG-[(18)F]FPyKYNE were prepared via efficient nucleophilic heteroaromatic [(18)F]fluorination of their corresponding 2-trimethylammoniumpyrdinyl precursors. The prosthetic groups were conjugated to azide- and PEG3-modified bombesin(6-14) analogues via copper-catalyzed azide-alkyne cycloaddition couplings to yield mono- and di-mini-PEGylated ligands for PET imaging of the gastrin- releasing peptide receptor. The PEG3- and PEG2/PEG3-bearing (18)F peptides showed decreased lipophilicity relative to an analogous non-mini-PEGylated (18)F peptide. Assessment of water-soluble peptide pharmacokinetics and tumour-targeting capabilities in a mouse model of prostate cancer is currently underway.


Assuntos
Bombesina , Radioisótopos de Flúor , Neoplasias Experimentais/diagnóstico , Neoplasias da Próstata/diagnóstico , Piridinas , Receptores da Bombesina/análise , Animais , Bombesina/síntese química , Bombesina/química , Modelos Animais de Doenças , Radioisótopos de Flúor/química , Ligantes , Masculino , Camundongos , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/química
14.
Chemistry ; 18(46): 14590-3, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23042520

RESUMO

One for all: a trianionic ligand containing the biologically relevant moieties phenolate and porphyrin was designed and synthesized. One-electron oxidation of the nickel and cobalt complexes of these ligands affords an unprecedented and highly stable hybrid porphyrinyl-phenoxyl radical bound to the metal center. Two-electron oxidation of these complexes leads to the M(2+) -(close-shell two-electron oxidized ligand) species.


Assuntos
Cobalto/química , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Porfirinas/química , Porfirinas/síntese química , Elétrons , Ligantes , Estrutura Molecular , Oxirredução
15.
Proc Natl Acad Sci U S A ; 108(46): 18600-5, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065750

RESUMO

Integrating sulfanyl substituents into copper-bonded phenoxyls significantly alters their optical and redox properties and provides insight into the influence of cysteine modification of the tyrosine cofactor in the enzyme galactose oxidase. The model complexes [1(SR2)](+) are class II mixed-valent Cu(II)-phenoxyl-phenolate species that exhibit intervalence charge transfer bands and intense visible sulfur-aryl π → π* transitions in the energy range, which provides a greater spectroscopic fidelity to oxidized galactose oxidase than non-sulfur-bearing analogs. The potentials for phenolate-based oxidations of the sulfanyl-substituted 1(SR2) are lower than the alkyl-substituted analogs by up to ca. 150 mV and decrease following the steric trend: -S(t)Bu > -S(i) Pr > -SMe. Density functional theory calculations suggest that reducing the steric demands of the sulfanyl substituent accommodates an in-plane conformation of the alkylsulfanyl group with the aromatic ring, which stabilizes the phenoxyl hole by ca. 8 kcal mol(-1) (1 kcal = 4.18 kJ; 350 mV) through delocalization onto the sulfur atom. Sulfur K-edge X-ray absorption spectroscopy clearly indicates a contribution of ca. 8-13% to the hole from the sulfur atoms in [1(SR2)](+). The electrochemical results for the model complexes corroborate the ca. 350 mV (density functional theory) contribution of hole delocalization on to the cysteine-tyrosine cross-link to the stability of the phenoxyl radical in the enzyme, while highlighting the importance of the in-plane conformation observed in all crystal structures of the enzyme.


Assuntos
Química/métodos , Cobre/química , Galactose Oxidase/química , Fenóis/química , Enxofre/química , Domínio Catalítico , Eletroquímica/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Oxirredução , Oxigênio/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Temperatura , Raios Ultravioleta
16.
Dalton Trans ; 39(6): 1604-15, 2010 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-20104324

RESUMO

Glycosides of 3-hydroxy-4-pyridinones were synthesized and characterized by mass spectrometry, elemental analysis, (1)H and (13)C NMR spectroscopy, and in one case by X-ray crystallography. The Cu(2+) complex of a novel 3-hydroxy-4-pyridinone was synthesized and characterized by IR and X-ray crystallography, showing the ability of these compounds to chelate potentially toxic metal ions. An MTT cytotoxicity assay of a selected glycosylated compound showed a relatively low toxicity of IC(50) = 570 +/- 90 microM in a human breast cancer cell line. The pyridinone glycosides could be cleaved by a broad specificity beta-glycosidase, Agrobacterium sp.beta-glucosidase, and for one compound k(cat) and K(m) were determined to be 19.8 s(-1) and 1.52 mM, respectively. Trolox Equivalent Antioxidant Capacity (TEAC) values were determined for the free pyridinones, indicating the good antioxidant properties of these compounds. Metal-Abeta(1-40) aggregates with zinc and copper were resolubilized by the non-glycosylated pyridinone ligands.


Assuntos
Antioxidantes/química , Glicosídeos/química , Piridonas/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/síntese química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Cobre/química , Cristalografia por Raios X , Glicosídeos/síntese química , Glicosídeos/toxicidade , Humanos , Cinética , Conformação Molecular
17.
Dalton Trans ; (16): 3034-43, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19352532

RESUMO

The tetrahydrosalens N,N'-bis(2-hydroxybenzyl)-ethane-1,2-diamine ((2)(1)), N,N'-bis(2-hydroxybenzyl)-(-)-1,2-cyclohexane-(1R,2R)-diamine ((2)(2)), N,N'-bis(2-hydroxybenzyl)-N,N'-dimethyl-ethane-1,2-diamine ((2)(3)), N,N'-bis(2-hydroxybenzyl)-N,N'-dibenzyl-ethane-1,2-diamine ((2)(4)), and N,N'-bis(2-(4-tert-butyl)hydroxybenzyl)-ethane-1,2-diamine ((2)(5)), as well as their prodrug glycosylated forms, (1-5), have been prepared and evaluated in vitro for their potential use as Alzheimer's disease (AD) therapeutics. Dysfunctional interactions of metal ions, especially those of Cu, Zn, and Fe, with the amyloid-beta (Abeta) peptide are hypothesised to play an important role in the aetiology of AD, and disruption of these aberrant metal-peptide interactions via chelation therapy holds considerable promise as a therapeutic strategy. Tetrahydrosalens such as (2)(1-5) have a significant affinity for metal ions, and thus should be able to compete with the Abeta peptide for Cu, Zn, and Fe in the brain. This activity was assayed in vitrovia a turbidity assay; (2)(1) and (2)(3) were found to attenuate Abeta(1-40) aggregation after exposure to Cu(2+) and Zn(2+). In addition, (2)(1-5) were determined to be potent antioxidants on the basis of an in vitro antioxidant assay. (1-5) were prepared as metal binding prodrugs; glycosylation is intended to prevent systemic metal binding, improve solubility, and enhance brain uptake. Enzymatic (beta-glucosidase) deprotection of the carbohydrate moieties was facile, with the exception of (4), demonstrating the general feasibility of this prodrug approach. Finally, a representative prodrug, (3), was determined to be non-toxic over a large concentration range in a cell viability assay.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Etilenodiaminas/química , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromanos/química , Etilenodiaminas/síntese química , Etilenodiaminas/metabolismo , Etilenodiaminas/toxicidade , Glicosilação , Humanos , Ligantes , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo
19.
Bioconjug Chem ; 17(5): 1321-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16984143

RESUMO

This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core (M = Re, Tc) in the context of preparing novel Tc(I) and Re(I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL(1-5), were coordinated to the [M(CO)(3)](+) core on the macroscopic scale (M = Re) and on the tracer scale (M = (99m)Tc, (186)Re). On the macroscopic scale the complexes, ReL(1-5)(CO)(3)(H(2)O), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor gave the tracer species (99m)TcL(1-5)(CO)(3)(H(2)O) in high radiochemical yields. Similar high radiochemical yields when labeling with (186)Re were facilitated by in situ preparation of the [(186)Re(CO)(3)(H(2)O)(3)](+) species in the presence of HL(1-5) to give (186)ReL(1-5)(CO)(3)(H(2)O). Stability challenges, incubating (99m)TcL(1-5)(CO)(3)(H(2)O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.


Assuntos
Carboidratos/química , Quelantes de Ferro/química , Piridonas/química , Radioisótopos/química , Rênio/química , Tecnécio/química , Glucose/química , Glucose/metabolismo , Hexoquinase/metabolismo , Ligantes , Estrutura Molecular , Piridonas/síntese química
20.
Chem Soc Rev ; 35(6): 534-44, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16729147

RESUMO

This tutorial review will highlight recent advances in medicinal inorganic chemistry pertaining to the use of multifunctional ligands for enhanced effect. Ligands that adequately bind metal ions and also include specific targeting features are gaining in popularity due to their ability to enhance the efficacy of less complicated metal-based agents. Moving beyond the traditional view of ligands modifying reactivity, stabilizing specific oxidation states, and contributing to substitution inertness, we will discuss recent work involving metal complexes with multifunctional ligands that target specific tissues, membrane receptors, or endogenous molecules, including enzymes.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Antineoplásicos/uso terapêutico , Meios de Contraste/química , Humanos , Elementos da Série dos Lantanídeos/uso terapêutico , Ligantes , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/uso terapêutico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA