Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889848

RESUMO

Bacterial strain G20-18T was previously isolated from the rhizosphere of an Arctic grass on Ellesmere Island, Canada and was characterized and described as Pseudomonas fluorescens. However, new polyphasic analyses coupled with phenotypic, phylogenetic and genomic analyses reported here demonstrate that the affiliation to the species P. fluorescens was incorrect. The strain is Gram-stain-negative, rod-shaped, aerobic and displays growth at 5-25 °C (optimum, 20-25 °C), at pH 5-9 (optimum, pH 6-7) and with 0-4 % NaCl (optimum, 2 % NaCl). The major fatty acids are C16 : 0 (35.6 %), C17 : 0 cyclo ω7c (26.3 %) and summed feature C18 : 1/C18 : 1 ω7c (13.6 %). The respiratory quinones were determined to be Q9 (93.5 %) and Q8 (6.5 %) and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain G20-18T was shown to synthesize cytokinin and auxin plant hormones and to produce 1-aminocyclopropane-1-carboxylate deaminase. The DNA G+C content was determined to be 59.1 mol%. Phylogenetic analysis based on the 16S rRNA gene and multilocus sequence analysis (concatenated 16S rRNA, gyrB, rpoB and rpoD sequences) showed that G20-18T was affiliated with the Pseudomonas mandelii subgroup within the genus Pseudomonas. Comparisons of the G20-18T genome sequence and related Pseudomonas type strain sequences showed an average nucleotide identity value of ≤93.6 % and a digital DNA-DNA hybridization value of less than 54.4 % relatedness. The phenotypic, phylogenetic and genomic data support the hypothesis that strain G20-18T represents a novel species of the genus Pseudomonas. As strain G20-18T produces or modifies hormones, the name Pseudomonas hormoni sp. nov. is proposed. The type strain is G20-18T (=LMG 33086T=NCIMB 15469T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Reguladores de Crescimento de Plantas , Análise de Sequência de DNA , Poaceae , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Genes Bacterianos , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Pseudomonas
2.
Artigo em Inglês | MEDLINE | ID: mdl-36749687

RESUMO

The bacterial strain In5T was previously isolated from a suppressive potato field in southern Greenland and has been characterized and described as Pseudomonas fluorescens. However, the results of new polyphasic analyses coupled with those of phenotypic, phylogenetic and genomic analyses reported here demonstrate that the affiliation to the species P. fluorescens was incorrect. The strain is Gram-stain-negative, rod-shaped, aerobic and displays growth at 4-28 °C (optimum temperature 20-25 °C) and at pH 5-9 (optimum pH 6-7). Major fatty acids were C16 : 0 (38.2 %), a summed feature consisting of C16 : 1ω6c and/or C16 : 1ω7c) (20.7 %), C17 : 0cyclo ω7c (14.3 %) and a summed feature consisting of C18 : 1ω6c and/or C18 : 1ω7c (11.7 %). The respiratory quinones were determined to be Q9 (95.5 %) and Q8 (4.5 %) and major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was determined to be 59.4 mol%. The results of phylogenetic analysis based on the 16S rRNA gene and multi-locus sequence analysis (MLSA; concatenated 16S rRNA, gyrB, rpoB and rpoD sequences) indicated that In5T was affiliated with the Pseudomonas mandelii subgroup within the genus Pseudomonas. Comparison of the genome sequence of In5T and those of related type strains of species of the genus Pseudomonas revealed an average nucleotide identity (ANI) of 87.7 % or less and digital DNA-DNA hybridization (dDDH) of less than 34.5 % relatedness, respectively. Two more strains, In614 and In655, isolated from the same suppressive soil were included in the genome analysis. The ANI and dDDH of In614 and In655 compared with In5T were ANI: 99.9 and 97.6 and dDDH (GGDC) 99.9 and 79.4, respectively, indicating that In5T, In614 and In655 are representatives of the same species. The results of the phenotypic, phylogenetic and genomic analyses support the hypothesis that strain In5T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nunensis sp. nov. is proposed. The type strain is In5T(=LMG 32653T=NCIMB 15428T).


Assuntos
Ácidos Graxos , Solanum tuberosum , Ácidos Graxos/química , Fosfolipídeos/química , Análise de Sequência de DNA , Groenlândia , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Genes Bacterianos , Ubiquinona/química , Composição de Bases , Técnicas de Tipagem Bacteriana , Pseudomonas
3.
J Agric Food Chem ; 71(1): 635-645, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580413

RESUMO

Oligosaccharides and anhydro-sugars derived from carrageenan have great potential as functional foods and drugs showing various bioactivities, including antioxidant, anti-inflammatory, antiviral, antitumor, and cytotoxic activities. Although preparation of sulfated carrageenan oligosaccharides by chemical and enzymatic processes has been widely reported, preparation of nonsulfated ß-neocarrabiose (ß-NC2) and the rare sugar 3,6-anhydro-d-galactose (d-AHG) was not reported in the literature. Based on the carrageenan catabolic pathway in marine heterotrophic bacteria, an enzymatic process was designed and constructed with recombinant κ-carrageenase, GH127/GH129 α-1,3 anhydrogalactosidase, and cell-free extract from marine carrageenolytic bacteria Colwellia echini A3T. The process consisted of three successive steps, namely, (i) depolymerization, (ii) desulfation, and (iii) monomerization, by which carrageenan oligosaccharides, ß-NC2, and d-AHG were obtained from κ-carrageenan. Unlike the chemical process, enzymatic hydrolysis yields oligosaccharides with the desired degree of polymerization facilitates specific removal of sulfated groups, free of toxic byproducts, and avoids chemical modifications. The final optimized enzymatic process produced 0.52 g of ß-NC2 and 0.24 g of d-AHG from 1 g of κ-carrageenan. The carrageenolytic process designed for the enzymatic hydrolysis of κ-carrageenan can be scaled up for the mass production of bioactive carrageeno-oligosaccharides.


Assuntos
Galactose , Sulfatos , Carragenina , Galactose/metabolismo , Oligossacarídeos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo
4.
Int J Syst Evol Microbiol ; 70(7): 4204-4211, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32553053

RESUMO

A novel bacterial strain, S40T, with strong antifungal activity was isolated from the rhizosphere of green potato collected from Zealand, Denmark. Polyphasic analysis with a combined phenotypic, phylogenetic and genomic approach was used to characterize S40T. Phylogenetic analysis based on the 16S rRNA gene and MLSA (concatenated gyrB, rpoD, infB and atpD sequences) showed that strain S40T was affiliated with the genus Serratia and with Serratia plymuthica PRI-2C as the closest related strain [average nucleotide identity (ANI), 99.26 %; DNA-DNA hybridization (dDDH), 99.20%]. However, whole genome sequence analyses revealed that S40T and S. plymuthica PRI-2C genomes displayed lower similarities when compared to all other S. plymuthica strains (ANI ≤94.34 %; dDDH ≤57.6 % relatedness). The DNA G+C content of strain S40T was determined to be 55.9 mol%. Cells of the strain were Gram-negative, rod-shaped, facultative anaerobic and displayed growth at 10-37 °C (optimum, 25-30 °C) and at pH 6-9 (optimum, pH 6-7). Major fatty acids were C16 : 0 (27.9 %), summed feature (C16 : 1 ω6c/C16 : 1 ω7c; 18.0 %) and C17 : 0 cyclo (15.1 %). The respiratory quinone was determined to be Q8 (94 %) and MK8 (95 %) and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The results of phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S40T represents a novel species of the genus Serratia, for which the name Serratia inhibens sp. nov. is proposed. The type strain is S40T (=LMG 31467T=NCIMB 15235T). In addition, we propose that S. plymuthica PRI-2C is reclassified and transferred to the species S. inhibens as S. inhibens PRI-2C.


Assuntos
Antibiose , Filogenia , Serratia/classificação , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Dinamarca , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Serratia/isolamento & purificação , Ubiquinona/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Int J Syst Evol Microbiol ; 67(7): 2242-2247, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671532

RESUMO

A novel bacterial strain, S66T, was isolated from eelgrass collected on the coastline of Zealand, Denmark. Polyphasic analyses involving phenotypic, phylogenetic and genomic methods were used to characterize strain S66T. The strain was Gram-reaction-negative, rod-shaped, aerobic, and displayed growth at 10-25 °C (optimum 20-25 °C) and at pH 7-9 (optimum pH 7.5). Furthermore, strain S66T grew on seaweed polysaccharides agar, agarose, porphyran, κ-carrageenan, alginate and laminarin as sole carbon sources. Major fatty acids were C16 : 0, C16 : 1ω7c and C18 : 1ω7c. The respiratory quinone was determined to be Q-8, and major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was determined to be 42.2 mol%. Phylogenetic analyses based on the 16S rRNA gene and GyrB sequence comparisons showed that the bacterium was affiliated with the genus Paraglaciecola within the family Alteromonadaceae of the class Gammaproteobacteria. The percentage similarity between the 16S rRNA gene and GyrB sequences of strain S66T and other members of the genus Paraglaciecola were 94-95 % and 84-85 %, respectively. Based on the genome sequence of S66T, the average nucleotide identity (ANI) between strain S66T and other members of the genus Paraglaciecola was 77-80 %, and DNA-DNA hybridization prediction showed values of less than 24 % relatedness, respectively, between S66T and other species of the genus Paraglaciecola. The phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S66T represents a novel species of the genus Paraglaciecola, for which the name Paraglaciecola hydrolytica sp. nov. is proposed. The type strain is S66T (=LMG 29457T=NCIMB 15060T=DSM 102834T).


Assuntos
Alteromonadaceae/classificação , Filogenia , Polissacarídeos/química , Alga Marinha/química , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Dinamarca , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
6.
Int J Syst Evol Microbiol ; 67(6): 1650-1655, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28141485

RESUMO

Two bacterial strains were isolated from sediments and microbial mats of Kingfisher Pond, Antarctica and characterized in a taxonomic study using a polyphasic approach. Cells were strictly aerobic, Gram-stain-negative, rod-shaped, motile (+50 flagellum-specific genes present in the genome sequence; motility observed under microscope) and formed creamy white, half-transparent colonies. Growth occurred at 4 to 28 °C with an optimum at 20 °C, with 0-5.0 % (w/v) NaCl (optimum at 0-1.0 %) and at pH 4.0-11.0 (optimum pH 7.0-9.0). The major fatty acid was C18 : 1ω7c. The respiratory quinone was ubiquinone 10 (Q-10). The DNA G+C content was 60.7 mol %. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmethanolamine in addition to three unidentified lipids, one unknown glycolipid and five unidentified phospholipids. Comparative analysis of 16S rRNA gene sequences showed highest sequence similarity (98.1 %) to Pararhizobium giardinii H152T, Pararhizobium herbae CCBAU 83011T, and 'Pararhizobium polonicum' F5.1. In silico average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) showed 81.1 % identity (ANI) and 22.6 % identity (GGDC) to the closest relative, 'P. polonicum' F5.1. On the basis of phenotypic, phylogenetic, genomic and chemotaxonomic data, the two strains represent a novel species of the genus Pararhizobium, for which the name Pararhizobium antarcticum sp. nov. is proposed. The type strain is NAQVI 59T(=DSM 103442T=LMG 29675T).


Assuntos
Filogenia , Rhizobiaceae/classificação , Microbiologia da Água , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
7.
mBio ; 6(2): e00079, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25784695

RESUMO

UNLABELLED: Potatoes are cultivated in southwest Greenland without the use of pesticides and with limited crop rotation. Despite the fact that plant-pathogenic fungi are present, no severe-disease outbreaks have yet been observed. In this report, we document that a potato soil at Inneruulalik in southern Greenland is suppressive against Rhizoctonia solani Ag3 and uncover the suppressive antifungal mechanism of a highly potent biocontrol bacterium, Pseudomonas fluorescens In5, isolated from the suppressive potato soil. A combination of molecular genetics, genomics, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) revealed an antifungal genomic island in P. fluorescens In5 encoding two nonribosomal peptides, nunamycin and nunapeptin, which are key components for the biocontrol activity by strain In5 in vitro and in soil microcosm experiments. Furthermore, complex microbial behaviors were highlighted. Whereas nunamycin was demonstrated to inhibit the mycelial growth of R. solani Ag3, but not that of Pythium aphanidermatum, nunapeptin instead inhibited P. aphanidermatum but not R. solani Ag3. Moreover, the synthesis of nunamycin by P. fluorescens In5 was inhibited in the presence of P. aphanidermatum. Further characterization of the two peptides revealed nunamycin to be a monochlorinated 9-amino-acid cyclic lipopeptide with similarity to members of the syringomycin group, whereas nunapeptin was a 22-amino-acid cyclic lipopeptide with similarity to corpeptin and syringopeptin. IMPORTANCE: Crop rotation and systematic pest management are used to only a limited extent in Greenlandic potato farming. Nonetheless, although plant-pathogenic fungi are present in the soil, the farmers do not experience major plant disease outbreaks. Here, we show that a Greenlandic potato soil is suppressive against Rhizoctonia solani, and we unravel the key biocontrol components for Pseudomonas fluorescens In5, one of the potent biocontrol bacteria isolated from this Greenlandic suppressive soil. Using a combination of molecular genetics, genomics, and microbial imaging mass spectrometry, we show that two cyclic lipopeptides, nunamycin and nunapeptin, are important for the biocontrol activity of P. fluorescens In5 both in vitro and in microcosm assays. Furthermore, we demonstrate that the synthesis of nunamycin is repressed by the oomycete Pythium aphanidermatum. Overall, our report provides important insight into interkingdom interference between bacteria and fungi/oomycetes.


Assuntos
Antifúngicos/metabolismo , Fungos/efeitos dos fármacos , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos/metabolismo , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas fluorescens/metabolismo , Microbiologia do Solo , DNA Bacteriano/química , DNA Bacteriano/genética , Fungos/crescimento & desenvolvimento , Ilhas Genômicas , Genômica , Groenlândia , Biologia Molecular , Proteômica , Análise de Sequência de DNA , Solanum tuberosum/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
PeerJ ; 3: e1476, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734508

RESUMO

Background. Bioactive microbial metabolites provide a successful source of novel compounds with pharmaceutical potentials. The bacterium Pseudomonas sp. In5 is a biocontrol strain isolated from a plant disease suppressive soil in Greenland, which produces two antimicrobial nonribosomal peptides (NRPs), nunapeptin and nunamycin. Methods. In this study, we used in vitro antimicrobial and anticancer bioassays to evaluate the potential bioactivities of both a crude extract derived from Pseudomonas sp. In5 and NRPs purified from the crude extract. Results. We verified that the crude extract derived from Pseudomonas sp. In5 showed suppressive activity against the basidiomycete Rhizoctonia solani by inducing a mitochondrial stress-response. Furthermore, we confirmed suppressive activity against the oomycete Pythium aphanidermatum by the Pseudomonas sp. In5 crude extract, and that the purified nunamycin and nunapeptin displayed distinct antimicrobial activities. In addition to the antimicrobial activity, we found that treatment of the cancer cell lines, Jurkat T-cells, Granta cells, and melanoma cells, with the Pseudomonas sp. In5 crude extract increased staining with the apoptotic marker Annexin V while no staining of healthy normal cells, i.e., naïve or activated CD4 T-cells, was observed. Treatment with either of the NRPs alone did not increase Annexin V staining of the Jurkat T-cells, despite individually showing robust antimicrobial activity, whereas an anticancer activity was detected when nunamycin and nunapeptin were used in combination. Discussion. Our results suggest that the bioactivity of a crude extract derived from Pseudomonas sp. In5 involves the presence of both nunamycin and nunapeptin and highlight the possibility of synergy between multiple microbial metabolites.

9.
Braz. j. microbiol ; 42(3): 868-877, July-Sept. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-607515

RESUMO

The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100 percent identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.


Assuntos
Amilases , Microbiologia Ambiental , RNA Bacteriano/análise , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação , beta-Amilase/análise , Métodos , Filogenia , Métodos
10.
Eukaryot Cell ; 9(8): 1225-35, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543064

RESUMO

Methylenetetrahydrofolate reductases (MTHFRs) play a key role in biosynthesis of methionine and S-adenosyl-l-methionine (SAM) via the recharging methionine biosynthetic pathway. Analysis of 32 complete fungal genomes showed that fungi were unique among eukaryotes by having two MTHFRs, MET12 and MET13. The MET12 type contained an additional conserved sequence motif compared to the sequences of MET13 and MTHFRs from other eukaryotes and bacteria. Targeted gene replacement of either of the two MTHFR encoding genes in Fusarium graminearum showed that they were essential for survival but could be rescued by exogenous methionine. The F. graminearum strain with a mutation of MET12 (FgDeltaMET12) displayed a delay in the production of the mycelium pigment aurofusarin and instead accumulated nor-rubrofusarin and rubrofusarin. High methionine concentrations or prolonged incubation eventually led to production of aurofusarin in the MET12 mutant. This suggested that the chemotype was caused by a lack of SAM units for the methylation of nor-rubrofusarin to yield rubrofusarin, thereby imposing a rate-limiting step in aurofusarin biosynthesis. The FgDeltaMET13 mutant, however, remained aurofusarin deficient at all tested methionine concentrations and instead accumulated nor-rubrofusarin and rubrofusarin. Analysis of MET13 mutants in F. graminearum and Aspergillus nidulans showed that both lacked extracellular reduction potential and were unable to complete mycelium pigment biosynthesis. These results are the first to show that MET13, in addition to its function in methionine biosynthesis, is required for the generation of the extracellular reduction potential necessary for pigment production in filamentous fungi.


Assuntos
Membrana Celular/enzimologia , Fusarium/citologia , Fusarium/enzimologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Pigmentos Biológicos/biossíntese , Sequência de Aminoácidos , Sequência Conservada , Espaço Extracelular/metabolismo , Fusarium/genética , Marcação de Genes , Genes Fúngicos/genética , Teste de Complementação Genética , Metionina/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/classificação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Dados de Sequência Molecular , Mutação/genética , Oxirredução , Fenótipo , Filogenia , Saccharomyces cerevisiae/enzimologia
11.
J Immunol ; 183(2): 897-906, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19553547

RESUMO

We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could directly stimulate functional MICA/B surface expression and MICA promoter activity by a mechanism dependent on intracellular calcium. Deletion and point mutations further demonstrated that a GC-box motif around -110 from the MICA transcription start site is essential for propionate-mediated MICA promoter activity. Other short-chain fatty acids such as lactate, acetate, and butyrate could also induce MICA/B expression. We observed a striking difference in the molecular signaling pathways that regulate MICA/B. A functional glycolytic pathway was essential for MICA/B expression after exposure to propionate and CMV. In contrast, compounds with histone deacetylase-inhibitory activity such as butyrate and FR901228 stimulated MICA/B expression through a pathway that was not affected by inhibition of glycolysis, clearly suggesting that MICA/B is regulated through different molecular mechanisms. We propose that propionate, produced either by bacteria or during cellular metabolism, has significant immunoregulatory function and may be cancer prophylactic.


Assuntos
Bactérias/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Propionatos/metabolismo , Linfócitos T/metabolismo , Ativação Transcricional/efeitos dos fármacos , Cálcio , Linhagem Celular Tumoral , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/prevenção & controle , Humanos , Células Jurkat , Ligantes , Ativação Linfocitária , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Regiões Promotoras Genéticas , Propionatos/farmacologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA