Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193906

RESUMO

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanism for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrate that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we show that targeting dCas9 to telomeres using sgTelo impedes DNA replication at telomeres and induces a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigate the genome-wide features of telomeres in the dCas9/sgTelo cells and observe a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-. Consistently, we also observe an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncover many interesting molecular and structural features of the ITCB and demonstrate that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.

2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617299

RESUMO

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanisms for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrated that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we showed that targeting dCas9 to telomeres using sgTelo impeded DNA replication at telomeres and induced a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigated the genome-wide features of telomeres in the dCas9/sgTelo cells and observed a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-.Consistently, we also observed an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncovered many novel molecular and structural features of the ITCB and demonstrated that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.

3.
Sci Rep ; 10(1): 17011, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046777

RESUMO

Gap junction (GJ) channels permit molecules, such as ions, metabolites and second messengers, to transfer between cells. Their function is critical for numerous cellular interactions, providing exchange of metabolites, signaling molecules, and ionic currents. GJ channels are composed of Connexin (Cx) hexamers paired across extracellular space and typically form large rafts of clustered channels, called plaques, at cell appositions. Cxs together with molecules that interact with GJ channels make up a supramolecular structure known as the GJ Nexus. While the stability of connexin localization in GJ plaques has been studied, mobility of other Nexus components has yet to be addressed. Colocalization analysis of several nexus components and other membrane proteins reveal that certain molecules are excluded from the GJ plaque (Aquaporin 4, EAAT2b), while others are quite penetrant (lipophilic molecules, Cx30, ZO-1, Occludin). Fluorescence recovery after photobleaching of tagged Nexus-associated proteins showed that mobility in plaque domains is affected by mobility of the Cx proteins. These novel findings indicate that the GJ Nexus is a dynamic membrane organelle, with cytoplasmic and membrane-embedded proteins binding and diffusing according to distinct parameters.


Assuntos
Conexinas/metabolismo , Citoplasma/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Canais Iônicos/metabolismo , Camundongos , Transporte Proteico/fisiologia , Proteína da Zônula de Oclusão-1/metabolismo
4.
Mol Biol Cell ; 28(21): 2757-2764, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28835376

RESUMO

Gap junctions are cellular contact sites composed of clustered connexin transmembrane proteins that act in dual capacities as channels for direct intercellular exchange of small molecules and as structural adhesion complexes known as gap junction nexuses. Depending on the connexin isoform, the cluster of channels (the gap junction plaque) can be stably or fluidly arranged. Here we used confocal microscopy and mutational analysis to identify the residues within the connexin proteins that determine gap junction plaque stability. We found that stability is altered by changing redox balance using a reducing agent-indicating gap junction nexus stability is modifiable. Stability of the arrangement of connexins is thought to regulate intercellular communication by establishing an ordered supramolecular platform. By identifying the residues that establish plaque stability, these studies lay the groundwork for exploration of mechanisms by which gap junction nexus stability modulates intercellular communication.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Conexinas/fisiologia , Cisteína/metabolismo , Citoplasma , Citosol/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Junções Comunicantes/fisiologia , Células HeLa , Humanos , Proteínas de Membrana , Domínios Proteicos , Isoformas de Proteínas , Ratos
5.
Mol Neurobiol ; 53(10): 6882-6896, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26660497

RESUMO

In the brain, astrocytes signal to neighboring cells via regulated exocytotic release of gliosignaling molecules, such as brain-derived neurotrophic factor (BDNF). Recent studies uncovered a role of ketamine, an anesthetic and antidepressant, in the regulation of BDNF expression and in the disruption of astrocytic Ca2+ signaling, but it is unclear whether it affects astroglial BDNF release. We investigated whether ketamine affects ATP-evoked Ca2+ signaling and exocytotic release of BDNF at the single-vesicle level in cultured rat astrocytes. Cells were transfected with a plasmid encoding preproBDNF tagged with the pH-sensitive fluorescent protein superecliptic pHluorin, (BDNF-pHse) to load vesicles and measure the release of BDNF-pHse when the exocytotic fusion pore opens and alkalinizes the luminal pH. In addition, cell-attached membrane capacitance changes were recorded to monitor unitary vesicle interaction with the plasma membrane. Intracellular Ca2+ activity was monitored with Fluo-4 and confocal microscopy, which was also used to immunocytochemically characterize BDNF-pHse-laden vesicles. As revealed by double-fluorescent micrographs, BDNF-pHse localized to vesicles positive for the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins, vesicle-associated membrane protein 2 (VAMP2), VAMP3, and synaptotagmin IV. Ketamine treatment decreased the number of ATP-evoked BDNF-pHse fusion/secretion events (P < 0.05), the frequency of ATP-evoked transient (P < 0.001) and full-fusion exocytotic (P < 0.05) events, along with a reduction in the ATP-evoked increase in intracellular Ca2+ activity in astrocytes by ~70 % (P < 0.001). The results show that ketamine treatment suppresses ATP-triggered vesicle fusion and BDNF secretion by increasing the probability of a narrow fusion pore open state and/or by reducing astrocytic Ca2+ excitability.


Assuntos
Trifosfato de Adenosina/farmacologia , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Vesículas Citoplasmáticas/metabolismo , Exocitose/efeitos dos fármacos , Ketamina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Biomarcadores/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Concentração de Íons de Hidrogênio , Fusão de Membrana/efeitos dos fármacos , Purinas/metabolismo , Ratos Wistar , Proteínas SNARE/metabolismo , Frações Subcelulares/metabolismo
6.
ACS Appl Mater Interfaces ; 7(1): 184-92, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25511125

RESUMO

Botulinum neurotoxins (BoNTs) are the most lethal toxin known to human. Biodefense requires early and rapid detection of BoNTs. Traditionally, BoNTs can be detected by looking for signs of botulism in mice that receive an injection of human material, serum or stool. While the living animal assay remains the most sensitive approach, it is costly, slow and associated with legal and ethical constrains. Various biochemical, optical and mechanical methods have been developed for BoNTs detection with improved speed, but with lesser sensitivity. Here, we report a novel nanopore-based BoNT type B (BoNT-B) sensor that monitors the toxin's enzymatic activity on its substrate, a recombinant synaptic protein synaptobrevin 2 derivative. By analyzing the modulation of the pore current caused by the specific BoNT-B-digested peptide as a marker, the presence of BoNT-B at a subnanomolar concentration was identified within minutes. The nanopore detector would fill the niche for a much needed rapid and highly sensitive detection of neurotoxins, and provide an excellent system to explore biophysical mechanisms for biopolymer transportation.


Assuntos
Técnicas Biossensoriais/métodos , Toxinas Botulínicas Tipo A/química , Peptídeos/química , Proteína 2 Associada à Membrana da Vesícula/química , Animais , Biocatálise , Técnicas Biossensoriais/instrumentação , Digestão , Isomerismo , Nanoporos , Ratos
7.
Cell Calcium ; 56(3): 208-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25109549

RESUMO

Astrocytes modulate synaptic transmission via release of gliotransmitters such as ATP, glutamate, D-serine and L-lactate. One of the main problems when studying the role of astrocytes in vitro and in vivo is the lack of suitable tools for their selective activation. Optogenetic actuators can be used to manipulate astrocytic activity by expression of variants of channelrhodopsin-2 (ChR2) or other optogenetic actuators with the aim to initiate intracellular events such as intracellular Ca(2+) ([Ca(2+)]i) and/or cAMP increases. We have developed an array of adenoviral vectors (AVV) with ChR2-like actuators, including an enhanced ChR2 mutant (H134R), and a mutant with improved Ca(2+) permeability (Ca(2+) translocating channelrhodopsin, CatCh). We show here that [Ca(2+)]i elevations evoked by ChR2(H134R) and CatCh in astrocytes are largely due to release of Ca(2+) from the intracellular stores. The autocrine action of ATP which is released under these conditions and acts on the P2Y receptors also contributes to the [Ca(2+)]i elevations. We also studied effects evoked using light-sensitive G-protein coupled receptors (opto-adrenoceptors). Activation of optoα1AR (Gq-coupled) and optoß2AR (Gs-coupled) resulted in astrocytic [Ca(2+)]i increases which were suppressed by blocking the corresponding intracellular signalling cascade (phospholipase C and adenylate cyclase, respectively). Interestingly, the bulk of [Ca(2+)]i responses evoked using either optoAR was blocked by an ATP degrading enzyme, apyrase, or a P2Y1 receptor blocker, MRS 2179, indicating that they are to a large extent triggered by the autocrine action of ATP. We conclude that, whilst optimal tools for control of astrocytes are yet to be generated, the currently available optogenetic actuators successfully initiate biologically relevant signalling events in astrocytes.


Assuntos
Astrócitos/metabolismo , Canais de Cálcio/fisiologia , Cálcio/metabolismo , Optogenética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Channelrhodopsins , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação/genética , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta 2/genética , Fosfolipases Tipo C/metabolismo
8.
Nat Commun ; 5: 3780, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24807050

RESUMO

Exocytic transmitter release is regulated by the SNARE complex, which contains a vesicular protein, synaptobrevin2 (Sb2). However, Sb2 vesicular arrangement is unclear. Here we use super-resolution fluorescence microscopy to study the prevalence and distribution of endogenous and exogenous Sb2 in single vesicles of astrocytes, the most abundant glial cells in the brain. We tag Sb2 protein at C- and N termini with a pair of fluorophores, which allows us to determine the Sb2 length and geometry. To estimate total number of Sb2 proteins per vesicle and the quantity necessary for the formation of fusion pores, we treat cells with ATP to stimulate Ca2+-dependent exocytosis, increase intracellular alkalinity to enhance the fluorescence presentation of yellow-shifted pHluorin (YpH), appended to the vesicle lumen domain of Sb2, and perform photobleaching of YpH fluorophores. Fluorescence intensity analysis reveals that the total number of endogenous Sb2 units or molecules per vesicle is ≤25.


Assuntos
Astrócitos/fisiologia , Encéfalo/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Encéfalo/citologia , Células Cultivadas , Exocitose/fisiologia , Feminino , Proteínas de Fluorescência Verde , Fusão de Membrana , Microscopia de Fluorescência , Fotodegradação , Ratos , Proteínas SNARE/metabolismo , Vesículas Transportadoras/fisiologia
9.
Nat Cell Biol ; 16(5): 401-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705551

RESUMO

The plasma membrane contributes to the formation of autophagosomes, the double-membrane vesicles that sequester cytosolic cargo and deliver it to lysosomes for degradation during autophagy. In this study, we have identified a regulatory role for connexins (Cx), the main components of plasma membrane gap junctions, in autophagosome formation. We have found that plasma-membrane-localized Cx proteins constitutively downregulate autophagy through a direct interaction with several autophagy-related proteins involved in the initial steps of autophagosome formation, such as Atg16 and components of the PI(3)K autophagy initiation complex (Vps34, Beclin-1 and Vps15). On nutrient starvation, this inhibitory effect is released by the arrival of Atg14 to the Cx-Atg complex. This promotes the internalization of Cx-Atg along with Atg9, which is also recruited to the plasma membrane in response to starvation. Maturation of the Cx-containing pre-autophagosomes into autophagosomes leads to degradation of these endogenous inhibitors, allowing for sustained activation of autophagy.


Assuntos
Autofagia , Membrana Celular/metabolismo , Conexina 43/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Conexina 43/deficiência , Conexina 43/genética , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , Ratos , Ratos Wistar , Transdução de Sinais , Inanição/metabolismo , Inanição/patologia , Fatores de Tempo , Transfecção , Vesículas Transportadoras/ultraestrutura , Proteína VPS15 de Distribuição Vacuolar/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-23565352

RESUMO

The "Bystander" and "Good Samaritan" effects involve the transfer of toxic or beneficial compounds from one cell to a generally adjacent other through gap junction channels and through extracellular routes. The variety of injuries in which bystander cell killing or protection occurs has greatly expanded in the last decade to include infectious agents and therapeutic compounds, radiation injury, chaperones in cell therapy and apoptosis in development. This has been accompanied by the appreciation that both gap junction mediated and paracrine routes are used for the signaling of the "kiss of life" and the "kiss of death" and that manipulations of these pathways and the molecules that use them may find therapeutic utility in treatment of a variety of pathological conditions.

11.
J Neurochem ; 121(1): 4-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22251135

RESUMO

Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Neuroglia/metabolismo , Neuroglia/patologia , Animais , Humanos , Neurônios/metabolismo , Neurônios/patologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA