Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(4): e0097621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399627

RESUMO

Aspergillus fumigatus is an important fungal pathogen that causes allergic reactions but also life-threatening infections. One of the most abundant A. fumigatus proteins is Asp f3. This peroxiredoxin is a major fungal allergen and known for its role as a virulence factor, vaccine candidate, and scavenger of reactive oxygen species. Based on the hypothesis that Asp f3 protects A. fumigatus against killing by immune cells, we investigated the susceptibility of a conditional aspf3 mutant by employing a novel assay. Surprisingly, Asp f3-depleted hyphae were killed as efficiently as the wild type by human granulocytes. However, we identified an unexpected growth defect of mutants that lack Asp f3 under low-iron conditions, which explains the avirulence of the Δaspf3 deletion mutant in a murine infection model. A. fumigatus encodes two Asp f3 homologues which we named Af3l (Asp f3-like) 1 and Af3l2. Inactivation of Af3l1, but not of Af3l2, exacerbated the growth defect of the conditional aspf3 mutant under iron limitation, which ultimately led to death of the double mutant. Inactivation of the iron acquisition repressor SreA partially compensated for loss of Asp f3 and Af3l1. However, Asp f3 was not required for maintaining iron homeostasis or siderophore biosynthesis. Instead, we show that it compensates for a loss of iron-dependent antioxidant enzymes. Iron supplementation restored the virulence of the Δaspf3 deletion mutant in a murine infection model. Our results unveil the crucial importance of Asp f3 to overcome nutritional immunity and reveal a new biological role of peroxiredoxins in adaptation to iron limitation. IMPORTANCE Asp f3 is one of the most abundant proteins in the pathogenic mold Aspergillus fumigatus. It has an enigmatic multifaceted role as a fungal allergen, virulence factor, reactive oxygen species (ROS) scavenger, and vaccine candidate. Our study provides new insights into the cellular role of this conserved peroxiredoxin. We show that the avirulence of a Δaspf3 mutant in a murine infection model is linked to a low-iron growth defect of this mutant, which we describe for the first time. Our analyses indicated that Asp f3 is not required for maintaining iron homeostasis. Instead, we found that Asp f3 compensates for a loss of iron-dependent antioxidant enzymes. Furthermore, we identified an Asp f3-like protein which is partially functionally redundant with Asp f3. We highlight an unexpected key role of Asp f3 and its partially redundant homologue Af3l1 in overcoming the host's nutritional immunity. In addition, we uncovered a new biological role of peroxiredoxins.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Feminino , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Homeostase , Humanos , Ferro/farmacologia , Estresse Oxidativo , Virulência , Fatores de Virulência/metabolismo
2.
J Biophotonics ; 13(1): e201900143, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682320

RESUMO

For the screening purposes urine is an especially attractive biofluid, since it offers easy and noninvasive sample collection and provides a snapshot of the whole metabolic status of the organism, which may change under different pathological conditions. Raman spectroscopy (RS) has the potential to monitor these changes and utilize them for disease diagnostics. The current study utilizes mouse models aiming to compare the feasibility of the urine based RS combined with chemometrics for diagnosing kidney diseases directly influencing urine composition and respiratory tract diseases having no direct connection to urine formation. The diagnostic models for included diseases were built using principal component analysis with linear discriminant analysis and validated with a leave-one-mouse-out cross-validation approach. Considering kidney disorders, the accuracy of 100% was obtained in discrimination between sick and healthy mice, as well as between two different kidney diseases. For asthma and invasive pulmonary aspergillosis achieved accuracies were noticeably lower, being, respectively, 77.27% and 78.57%. In conclusion, our results suggest that RS of urine samples not only provides a solution for a rapid, sensitive and noninvasive diagnosis of kidney disorders, but also holds some promises for the screening of nonurinary tract diseases.


Assuntos
Asma , Análise Espectral Raman , Animais , Análise Discriminante , Programas de Rastreamento , Camundongos , Análise de Componente Principal
3.
mBio ; 9(5)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279286

RESUMO

Aspergillus fumigatus is a common airborne fungal pathogen of humans and a significant source of mortality in immunocompromised individuals. Here, we provide the most extensive cell wall proteome profiling to date of A. fumigatus resting conidia, the fungal morphotype pertinent to first contact with the host. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified proteins within the conidial cell wall by hydrogen-fluoride (HF)-pyridine extraction and proteins exposed on the surface using a trypsin-shaving approach. One protein, designated conidial cell wall protein A (CcpA), was identified by both methods and was found to be nearly as abundant as hydrophobic rodlet layer-forming protein RodA. CcpA, an amphiphilic protein, like RodA, peaks in expression during sporulation on resting conidia. Despite high cell wall abundance, the cell surface structure of ΔccpA resting conidia appeared normal. However, trypsin shaving of ΔccpA conidia revealed novel surface-exposed proteins not detected on conidia of the wild-type strain. Interestingly, the presence of swollen ΔccpA conidia led to higher activation of neutrophils and dendritic cells than was seen with wild-type conidia and caused significantly less damage to epithelial cells in vitro In addition, virulence was highly attenuated when cortisone-treated, immunosuppressed mice were infected with ΔccpA conidia. CcpA-specific memory T cell responses were detectable in healthy human donors naturally exposed to A. fumigatus conidia, suggesting a role for CcpA as a structural protein impacting conidial immunogenicity rather than possessing a protein-intrinsic immunosuppressive effect. Together, these data suggest that CcpA serves as a conidial stealth protein by altering the conidial surface structure to minimize innate immune recognition.IMPORTANCE The mammalian immune system relies on recognition of pathogen surface antigens for targeting and clearance. In the absence of immune evasion strategies, pathogen clearance is rapid. In the case of Aspergillus fumigatus, the successful fungus must avoid phagocytosis in the lung to establish invasive infection. In healthy individuals, fungal spores are cleared by immune cells; however, in immunocompromised patients, clearance mechanisms are impaired. Here, using proteome analyses, we identified CcpA as an important fungal spore protein involved in pathogenesis. A. fumigatus lacking CcpA was more susceptible to immune recognition and prompt eradication and, consequently, exhibited drastically attenuated virulence. In infection studies, CcpA was required for virulence in infected immunocompromised mice, suggesting that it could be used as a possible immunotherapeutic or diagnostic target in the future. In summary, our report adds a protein to the list of those known to be critical to the complex fungal spore surface environment and, more importantly, identifies a protein important for conidial immunogenicity during infection.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteoma/análise , Células A549 , Animais , Aspergilose/imunologia , Parede Celular/química , Cromatografia Líquida , Células Dendríticas/imunologia , Endocitose , Células Epiteliais/imunologia , Feminino , Proteínas Fúngicas/genética , Humanos , Hospedeiro Imunocomprometido , Proteínas de Membrana/genética , Camundongos , Ativação de Neutrófilo , Esporos Fúngicos/patogenicidade , Linfócitos T/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
PLoS Genet ; 14(10): e1007762, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30365497

RESUMO

Both branched-chain amino acids (BCAA) and iron are essential nutrients for eukaryotic cells. Previously, the Zn2Cys6-type transcription factor Leu3/LeuB was shown to play a crucial role in regulation of BCAA biosynthesis and nitrogen metabolism in Saccharomyces cerevisiae and Aspergillus nidulans. In this study, we found that the A. fumigatus homolog LeuB is involved in regulation of not only BCAA biosynthesis and nitrogen metabolism but also iron acquisition including siderophore metabolism. Lack of LeuB caused a growth defect, which was cured by supplementation with leucine or iron. Moreover, simultaneous inactivation of LeuB and HapX, a bZIP transcription factor required for adaptation to iron starvation, significantly aggravated the growth defect caused by inactivation of one of these regulators during iron starvation. In agreement with a direct role in regulation of both BCAA and iron metabolism, LeuB was found to bind to phylogenetically conserved motifs in promoters of genes involved in BCAA biosynthesis, nitrogen metabolism, and iron acquisition in vitro and in vivo, and was required for full activation of their expression. Lack of LeuB also caused activation of protease activity and autophagy via leucine depletion. Moreover, LeuB inactivation resulted in virulence attenuation of A. fumigatus in Galleria mellonella. Taken together, this study identified a previously uncharacterized direct cross-regulation of BCCA biosynthesis, nitrogen metabolism and iron homeostasis as well as proteolysis.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Aspergillus nidulans/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Ferro/metabolismo , Leucina/biossíntese , Leucina/genética , Nitrogênio/metabolismo , Proteostase , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Virulência
5.
Sci Rep ; 7: 44434, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290525

RESUMO

The use of animal models of arthritis is a key component in the evaluation of therapeutic strategies against the human disease rheumatoid arthritis (RA). Here we present quantitative measurements of bone degradation characterised by the cortical bone profile using glucose-6-phosphate isomerase (G6PI) induced arthritis. We applied micro-computed tomography (µCT) during three arthritis experiments and one control experiment to image the metatarsals of the hind paws and to investigate the effect of experimental arthritis on their cortical bone profile. For measurements of the cortical profile we automatically identified slices that are orthogonal to individual metatarsals, thereby making the measurements independent of animal placement in the scanner. We measured the average cortical thickness index (CTI) of the metatarsals, as well as the thickness changes along the metatarsal. In this study we introduced the cortical thickness gradient (CTG) as a new measure and we investigated how arthritis affects this measure. We found that in general both CTI and CTG are able to quantify arthritic progression, whilst CTG was found to be the more sensitive measure.


Assuntos
Artrite Experimental/diagnóstico por imagem , Artrite Reumatoide/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/fisiopatologia , Artrite Reumatoide/fisiopatologia , Osso e Ossos/fisiopatologia , Modelos Animais de Doenças , Glucose-6-Fosfato Isomerase/toxicidade , Humanos , Camundongos , Modelos Teóricos , Microtomografia por Raio-X
6.
Sci Rep ; 6: 33396, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624005

RESUMO

Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.


Assuntos
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/química , Estresse Oxidativo , Peroxirredoxinas/química , Animais , Aspergilose/microbiologia , Cristalografia por Raios X , Feminino , Deleção de Genes , Cinética , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Peroxidase/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Superóxidos/toxicidade , Virulência
7.
Mol Microbiol ; 96(1): 148-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25582336

RESUMO

Aspergillus fumigatus is an opportunistic human pathogenic fungus causing life-threatening infections in immunocompromised patients. Adaptation to different habitats and also virulence of the fungus depends on signal perception and transduction by modules such as the cyclic AMP-dependent protein kinase A (PKA) pathway. Here, by transcriptome analysis, 632 differentially regulated genes of this important signaling cascade were identified, including 23 putative transcriptional regulators. The highest upregulated transcription factor gene was located in a previously unknown secondary metabolite gene cluster, which we named fmp, encoding an incomplete non-ribosomal peptide synthetase, FmpE. Overexpression of the regulatory gene fmpR using the Tet(On) system led to the specific expression of the other six genes of the fmp cluster. Metabolic profiling of wild type and fmpR overexpressing strain by HPLC-DAD and HPLC-HRESI-MS and structure elucidation by NMR led to identification of 5-benzyl-1H-pyrrole-2-carboxylic acid, which we named fumipyrrole. Fumipyrrole was not described as natural product yet. Chemical synthesis of fumipyrrole confirmed its structure. Interestingly, deletion of fmpR or fmpE led to reduced growth and sporulation of the mutant strains. Although fmp cluster genes were transcribed in infected mouse lungs, deletion of fmpR resulted in wild-type virulence in a murine infection model.


Assuntos
Aspergillus fumigatus/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Prolina/análogos & derivados , Animais , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Pulmão/patologia , Camundongos , Família Multigênica , Peptídeo Sintases/genética , Prolina/metabolismo , Aspergilose Pulmonar/microbiologia , Aspergilose Pulmonar/patologia , Transdução de Sinais/genética
8.
Cell Transplant ; 21(4): 723-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21929866

RESUMO

Experimental transplantation of human umbilical cord blood (hUCB) mononuclear cells (MNCs) in rodent stroke models revealed the therapeutic potential of these cells. However, effective cells within the heterogeneous MNC population and their modes of action are still under discussion. MNCs and MNC fractions enriched (CD34(+)) or depleted (CD34(-)) for CD34-expressing stem/progenitor cells were isolated from hUCB. Cells were transplanted intravenously following middle cerebral artery occlusion in spontaneously hypertensive rats and directly or indirectly cocultivated with hippocampal slices previously subjected to oxygen and glucose deprivation. Application of saline solution or a human T-cell line served as controls. In vivo, MNCs, CD34(+) and CD34(-) cells reduced neurofunctional deficits and diminished lesion volume as determined by magnetic resonance imaging. MNCs were superior to other fractions. However, human cells could not be identified in brain tissue 29 days after stroke induction. Following direct application on postischemic hippocampal slices, MNCs reduced neural damage throughout a 3-day observation period. CD34(+) cells provided transient protection for 2 days. The CD34(-) fraction, in contrast to in vivo results, failed to reduce neural damage. Direct cocultivation of MNCs was superior to indirect cocultivation of equal cell numbers. Indirect application of up to 10-fold MNC concentrations enhanced neuroprotection to a level comparable to direct cocultivation. After direct application, MNCs migrated into the slices. Flow cytometric analysis of migrated cells revealed that the CD34(+) cells within MNCs were preferably attracted by damaged hippocampal tissue. Our study suggests that MNCs provide the most prominent neuroprotective effect, with CD34(+) cells seeming to be particularly involved in the protective action of MNCs. CD34(+) cells preferentially home to neural tissue in vitro, but are not superior concerning the overall effect, implying that there is another, still undiscovered, protective cell population. Furthermore, MNCs did not survive in the ischemic brain for longer periods without immunosuppression.


Assuntos
Sangue Fetal/citologia , Acidente Vascular Cerebral/terapia , Animais , Antígenos CD34/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética , Masculino , Fatores de Crescimento Neural , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA