Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(7): 1233-1248, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917754

RESUMO

The NTSR1 neurotensin receptor (NTSR1) is a G protein-coupled receptor (GPCR) found in the brain and peripheral tissues with neurotensin (NTS) being its endogenous peptide ligand. In the brain, NTS modulates dopamine neuronal activity, induces opioid-independent analgesia, and regulates food intake. Recent studies indicate that biasing NTSR1 toward ß-arrestin signaling can attenuate the actions of psychostimulants and other drugs of abuse. Here, we provide the cryoEM structures of NTSR1 ternary complexes with heterotrimeric Gq and GoA with and without the brain-penetrant small-molecule SBI-553. In functional studies, we discovered that SBI-553 displays complex allosteric actions exemplified by negative allosteric modulation for G proteins that are Gα subunit selective and positive allosteric modulation and agonism for ß-arrestin translocation at NTSR1. Detailed structural analysis of the allosteric binding site illuminated the structural determinants for biased allosteric modulation of SBI-553 on NTSR1.


Assuntos
Neurotensina , Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Neurotensina/metabolismo , Transdução de Sinais , Peptídeos/metabolismo , beta-Arrestinas/metabolismo
2.
Cell ; 179(4): 895-908.e21, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675498

RESUMO

The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. VIDEO ABSTRACT.


Assuntos
Genômica , Peptídeos/genética , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos/genética , Biologia Computacional , Redes Reguladoras de Genes/genética , Genitália/metabolismo , Genitália/patologia , Humanos , Ligantes , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Transdução de Sinais/genética
3.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878120

RESUMO

The oncoprotein Mdm2 is a RING domain-containing E3 ubiquitin ligase that ubiquitinates G protein-coupled receptor kinase 2 (GRK2) and ß-arrestin2, thereby regulating ß-adrenergic receptor (ßAR) signaling and endocytosis. Previous studies showed that cardiac Mdm2 expression is critical for controlling p53-dependent apoptosis during early embryonic development, but the role of Mdm2 in the developed adult heart is unknown. We aimed to identify if Mdm2 affects ßAR signaling and cardiac function in adult mice. Using Mdm2/p53-KO mice, which survive for 9-12 months, we identified a critical and potentially novel role for Mdm2 in the adult mouse heart through its regulation of cardiac ß1AR signaling. While baseline cardiac function was mostly similar in both Mdm2/p53-KO and wild-type (WT) mice, isoproterenol-induced cardiac contractility in Mdm2/p53-KO was significantly blunted compared with WT mice. Isoproterenol increased cAMP in left ventricles of WT but not of Mdm2/p53-KO mice. Additionally, while basal and forskolin-induced calcium handling in isolated Mdm2/p53-KO and WT cardiomyocytes were equivalent, isoproterenol-induced calcium handling in Mdm2/p53-KO was impaired. Mdm2/p53-KO hearts expressed 2-fold more GRK2 than WT. GRK2 polyubiquitination via lysine-48 linkages was significantly reduced in Mdm2/p53-KO hearts. Tamoxifen-inducible cardiomyocyte-specific deletion of Mdm2 in adult mice also led to a significant increase in GRK2, and resulted in severely impaired cardiac function, high mortality, and no detectable ßAR responsiveness. Gene delivery of either Mdm2 or GRK2-CT in vivo using adeno-associated virus 9 (AAV9) effectively rescued ß1AR-induced cardiac contractility in Mdm2/p53-KO. These findings reveal a critical p53-independent physiological role of Mdm2 in adult hearts, namely, regulation of GRK2-mediated desensitization of ßAR signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Contração Miocárdica/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Ecocardiografia , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Coração/diagnóstico por imagem , Coração/fisiologia , Hemodinâmica/efeitos dos fármacos , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
4.
Cell ; 166(4): 907-919, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27499021

RESUMO

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , AMP Cíclico/metabolismo , Endossomos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Microscopia Eletrônica , Complexos Multiproteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
5.
Mol Pharmacol ; 85(3): 472-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24319111

RESUMO

The biologic activity induced by ligand binding to orthosteric or allosteric sites on a G protein-coupled receptor (GPCR) is mediated by stabilization of specific receptor conformations. In the case of the ß2 adrenergic receptor, these ligands are generally small-molecule agonists or antagonists. However, a monomeric single-domain antibody (nanobody) from the Camelid family was recently found to allosterically bind and stabilize an active conformation of the ß2-adrenergic receptor (ß2AR). Here, we set out to study the functional interaction of 18 related nanobodies with the ß2AR to investigate their roles as novel tools for studying GPCR biology. Our studies revealed several sequence-related nanobody families with preferences for active (agonist-occupied) or inactive (antagonist-occupied) receptors. Flow cytometry analysis indicates that all nanobodies bind to epitopes displayed on the intracellular receptor surface; therefore, we transiently expressed them intracellularly as "intrabodies" to test their effects on ß2AR-dependent signaling. Conformational specificity was preserved after intrabody conversion as demonstrated by the ability for the intracellularly expressed nanobodies to selectively bind agonist- or antagonist-occupied receptors. When expressed as intrabodies, they inhibited G protein activation (cyclic AMP accumulation), G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation, ß-arrestin recruitment, and receptor internalization to varying extents. These functional effects were likely due to either steric blockade of downstream effector (Gs, ß-arrestin, GRK) interactions or stabilization of specific receptor conformations which do not support effector coupling. Together, these findings strongly implicate nanobody-derived intrabodies as novel tools to study GPCR biology.


Assuntos
Receptores Adrenérgicos beta 2/metabolismo , Anticorpos de Domínio Único/metabolismo , Sequência de Aminoácidos , Linhagem Celular , AMP Cíclico/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Alinhamento de Sequência
6.
Nature ; 477(7364): 349-53, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857681

RESUMO

The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates ß(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated ß(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of ß-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which ß-adrenergic catecholamines, acting through both Gs-PKA and ß-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, ß-arrestin-1 (ARRB1), activated via ß(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.


Assuntos
Arrestinas/metabolismo , Dano ao DNA , Receptores Adrenérgicos beta 2/metabolismo , Estresse Fisiológico/fisiologia , Animais , Arrestinas/deficiência , Arrestinas/genética , Catecolaminas/farmacologia , Linhagem Celular , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Testículo/metabolismo , Timo/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , beta-Arrestina 1 , beta-Arrestinas
7.
Biochemistry ; 49(12): 2657-71, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20136148

RESUMO

The 5-hydroxytryptamine 2A (5-HT(2A)) receptor is a member of the G protein-coupled receptor superfamily (GPCR) and plays a key role in transducing a variety of cellular signals elicited by serotonin (5-HT; 5-hydroxytryptamine) in both peripheral and central tissues. Recently, we discovered that the ERK/MAPK effector p90 ribosomal S6 kinase 2 (RSK2) phosphorylates the 5-HT(2A) receptor and attenuates 5-HT(2A) receptor signaling. This raised the intriguing possibility of a regulatory paradigm whereby receptor tyrosine kinases (RTKs) attenuate GPCR signaling (i.e., "inhibitory cross-talk") by activating RSK2 [Strachan et al. (2009) J. Biol. Chem. 284, 5557-5573]. We report here that activation of multiple endogenous RTKs such as the epidermal growth factor receptor (EGFR), the platelet-derived growth factor receptor (PDGFR), and ErbB4 significantly attenuates 5-HT(2A) receptor signaling in a variety of cell types including mouse embryonic fibroblasts (MEFs), mouse vascular smooth muscle cells (mVSMCs), and primary cortical neurons. Importantly, genetic deletion of RSK2 completely prevented signal attenuation, thereby suggesting that RSK2 is a critical mediator of inhibitory cross-talk between RTKs and 5-HT(2A) receptors. We also discovered that P2Y purinergic receptor signaling was similarly attenuated following EGFR activation. By directly testing multiple endogenous growth factors/RTK pathways and multiple Gq-coupled GPCRs, we have now established a cellular mechanism whereby RTK signaling cascades act via RSK2 to attenuate GPCR signaling. Given the pervasiveness of growth factor signaling, this novel regulatory mechanism has the potential to explain how 5-HT(2A) receptors are regulated in vivo, with potential implications for human diseases in which 5-HT(2A) or RTK activity is altered (e.g., neuropsychiatric and neurodevelopmental disorders).


Assuntos
Receptores ErbB/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/fisiologia , Animais , Antígenos CD/imunologia , Sobrevivência Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores da Transferrina/imunologia , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Mol Pharmacol ; 77(3): 327-38, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933401

RESUMO

The concept of functional selectivity has now thoroughly supplanted the previously entrenched notion of intrinsic efficacy by explaining how agonists and antagonists exhibit a range of efficacies for distinct receptor-mediated responses. It is noteworthy that functional selectivity accommodates significant changes in efficacy resulting from differential expression of G protein-coupled receptor modifying proteins (i.e., "conditional efficacy")-a phenomenon with profound implications for drug discovery. We have uncovered a novel regulatory mechanism whereby p90 ribosomal S6 kinase 2 (RSK2) interacts with 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and attenuates receptor signaling via direct receptor phosphorylation (Proc Natl Acad Sci U S A 103:4717-4722, 2006; J Biol Chem 284:5557-5573, 2009). This discovery, together with the mounting evidence for conditional efficacy, suggested to us that 5-HT(2A) agonist signaling might be disproportionately affected by alterations in RSK2 expression. To test this hypothesis, we evaluated a chemically diverse set of 5-HT(2A) agonists at three readouts of 5-HT(2A) receptor activation in both wild-type (WT) and RSK2 knock-out (KO) mouse embryonic fibroblasts (MEFs). Here we report that 5-HT(2A) receptor agonist efficacies were significantly and variably augmented in RSK2 KO MEFs compared with WT MEFs. As a result, relative agonist efficacies were significantly altered, and even reversed, between WT and RSK2 KO MEFs for a single effector readout. This study provides the first evidence that deletion of a single kinase can elicit profound changes in patterns of agonist functional selectivity.


Assuntos
Deleção de Genes , Sistema de Sinalização das MAP Quinases/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina , Agonistas do Receptor de Serotonina/farmacologia
9.
J Biol Chem ; 284(9): 5557-73, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19103592

RESUMO

The 5-hydroxytryptamine 2A (5-HT(2A)) receptor is a member of the G protein-coupled receptor superfamily (GPCR) and plays a key role in transducing a variety of cellular signals elicited by 5-hydroxytryptamine in both peripheral and central tissues. Despite its broad physiological importance, our current understanding of 5-HT(2A) receptor regulation is incomplete. We recently reported the novel finding that the multifunctional ERK effector ribosomal S6 kinase 2 (RSK2) physically interacts with the 5-HT(2A) receptor third intracellular (i3) loop and modulates receptor signaling (Sheffler, D. J., Kroeze, W. K., Garcia, B. G., Deutch, A. Y., Hufeisen, S. J., Leahy, P., Bruning, J. C., and Roth, B. L. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 4717-4722). We report here that RSK2 directly phosphorylates the 5-HT(2A) receptor i3 loop at the conserved residue Ser-314, thereby modulating 5-HT(2A) receptor signaling. Furthermore, these studies led to the discovery that RSK2 is required for epidermal growth factor-mediated heterologous desensitization of the 5-HT(2A) receptor. We arrived at these conclusions via multiple lines of evidence, including in vitro kinase experiments, tandem mass spectrometry, and site-directed mutagenesis. Our findings were further validated using phospho-specific Western blot analysis, metabolic labeling studies, and whole-cell signaling experiments. These results support a novel regulatory mechanism in which a downstream effector of the ERK/MAPK pathway directly interacts with, phosphorylates, and modulates signaling of the 5-HT(2A) serotonin receptor. To our knowledge, these findings are the first to demonstrate that a downstream member of the ERK/MAPK cascade phosphorylates a GPCR as well as mediates cross-talk between a growth factor and a GPCR.


Assuntos
Receptor 5-HT2A de Serotonina/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Western Blotting , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Receptor 5-HT2A de Serotonina/genética , Retroviridae/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA