Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Neurodev Disord ; 16(1): 9, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481146

RESUMO

Cyclic adenosine 3', 5' monophosphate (cAMP)-dependent Protein Kinase A (PKA) is a multi-functional serine/threonine kinase that regulates a wide variety of physiological processes including gene transcription, metabolism, and synaptic plasticity. Genomic sequencing studies have identified both germline and somatic variants of the catalytic and regulatory subunits of PKA in patients with metabolic and neurodevelopmental disorders. In this review we discuss the classical cAMP/PKA signaling pathway and the disease phenotypes that result from PKA variants. This review highlights distinct isoform-specific cognitive deficits that occur in both PKA catalytic and regulatory subunits, and how tissue-specific distribution of these isoforms may contribute to neurodevelopmental disorders in comparison to more generalized endocrine dysfunction.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Doenças do Sistema Nervoso , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosforilação , Transdução de Sinais
2.
Mol Cell ; 84(8): 1570-1584.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537638

RESUMO

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Separação de Fases , Animais , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168176

RESUMO

Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures the specific execution of various cellular functions. Liquid-liquid phase separation (LLPS) of the ubiquitously expressed PKA regulatory subunit RIα was recently identified as a major driver of cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces combined with the cAMP-induced release of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence are required to drive RIα condensate formation in cytosol, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in the formation of a non-canonical R:C complex, which serves to maintain low basal PKA activity in the cytosol by enabling the recruitment of active PKA-C to RIα condensates. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.

4.
Elife ; 112022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924897

RESUMO

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.


Assuntos
Proteína Fosfatase 2 , Microscopia Crioeletrônica , Desmetilação , Holoenzimas/metabolismo , Metilação , Proteína Fosfatase 2/metabolismo
5.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228795

RESUMO

Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.


Assuntos
Deficiência Intelectual , Proteína Fosfatase 2 , Animais , Humanos , Deficiência Intelectual/genética , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo
6.
Cells ; 9(2)2020 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991888

RESUMO

Best known as the powerhouse of the cell, mitochondria have many other important functions such as buffering intracellular calcium and reactive oxygen species levels, initiating apoptosis and supporting cell proliferation and survival. Mitochondria are also dynamic organelles that are constantly undergoing fission and fusion to meet specific functional needs. These processes and functions are regulated by intracellular signaling at the mitochondria. A-kinase anchoring protein 1 (AKAP1) is a scaffold protein that recruits protein kinase A (PKA), other signaling proteins, as well as RNA to the outer mitochondrial membrane. Hence, AKAP1 can be considered a mitochondrial signaling hub. In this review, we discuss what is currently known about AKAP1's function in health and diseases. We focus on the recent literature on AKAP1's roles in metabolic homeostasis, cancer and cardiovascular and neurodegenerative diseases. In healthy tissues, AKAP1 has been shown to be important for driving mitochondrial respiration during exercise and for mitochondrial DNA replication and quality control. Several recent in vivo studies using AKAP1 knockout mice have elucidated the role of AKAP1 in supporting cardiovascular, lung and neuronal cell survival in the stressful post-ischemic environment. In addition, we discuss the unique involvement of AKAP1 in cancer tumor growth, metastasis and resistance to chemotherapy. Collectively, the data indicate that AKAP1 promotes cell survival throug regulating mitochondrial form and function. Lastly, we discuss the potential of targeting of AKAP1 for therapy of various disorders.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/genética , Humanos , Camundongos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética
7.
Am J Physiol Heart Circ Physiol ; 317(6): H1231-H1242, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674811

RESUMO

Type I PKA regulatory α-subunit (RIα; encoded by the Prkar1a gene) serves as the predominant inhibitor protein of the catalytic subunit of cAMP-dependent protein kinase (PKAc). However, recent evidence suggests that PKA signaling can be initiated by cAMP-independent events, especially within the context of cellular oxidative stress such as ischemia-reperfusion (I/R) injury. We determined whether RIα is actively involved in the regulation of PKA activity via reactive oxygen species (ROS)-dependent mechanisms during I/R stress in the heart. Induction of ex vivo global I/R injury in mouse hearts selectively downregulated RIα protein expression, whereas RII subunit expression appears to remain unaltered. Cardiac myocyte cell culture models were used to determine that oxidant stimulus (i.e., H2O2) alone is sufficient to induce RIα protein downregulation. Transient increase of RIα expression (via adenoviral overexpression) negatively affects cell survival and function upon oxidative stress as measured by increased induction of apoptosis and decreased mitochondrial respiration. Furthermore, analysis of mitochondrial subcellular fractions in heart tissue showed that PKA-associated proteins are enriched in subsarcolemmal mitochondria (SSM) fractions and that loss of RIα is most pronounced at SSM upon I/R injury. These data were supported via electron microscopy in A-kinase anchoring protein 1 (AKAP1)-knockout mice, where loss of AKAP1 expression leads to aberrant mitochondrial morphology manifested in SSM but not interfibrillar mitochondria. Thus, we conclude that modification of RIα via ROS-dependent mechanisms induced by I/R injury has the potential to sensitize PKA signaling in the cell without the direct use of the canonical cAMP-dependent activation pathway.NEW & NOTEWORTHY We uncovered a previously undescribed phenomenon involving oxidation-induced activation of PKA signaling in the progression of cardiac ischemia-reperfusion injury. Type I PKA regulatory subunit RIα, but not type II PKA regulatory subunits, is dynamically regulated by oxidative stress to trigger the activation of the catalytic subunit of PKA in cardiac myocytes. This effect may play a critical role in the regulation of subsarcolemmal mitochondria function upon the induction of ischemic injury in the heart.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais
8.
J Clin Invest ; 129(4): 1641-1653, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30721156

RESUMO

Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.


Assuntos
Carcinoma Neuroendócrino/enzimologia , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral , Ativadores de Enzimas/farmacologia , Fase G1/efeitos dos fármacos , Fase G1/genética , Humanos , Proteínas Oncogênicas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas rab de Ligação ao GTP/genética
9.
J Cell Biol ; 216(12): 4123-4139, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29158231

RESUMO

Drp1 is a dynamin guanosine triphosphatase important for mitochondrial and peroxisomal division. Drp1 oligomerization and mitochondrial recruitment are regulated by multiple factors, including interaction with mitochondrial receptors such as Mff, MiD49, MiD51, and Fis. In addition, both endoplasmic reticulum (ER) and actin filaments play positive roles in mitochondrial division, but mechanisms for their roles are poorly defined. Here, we find that a population of Drp1 oligomers is associated with ER in mammalian cells and is distinct from mitochondrial or peroxisomal Drp1 populations. Subpopulations of Mff and Fis1, which are tail-anchored proteins, also localize to ER. Drp1 oligomers assemble on ER, from which they can transfer to mitochondria. Suppression of Mff or inhibition of actin polymerization through the formin INF2 significantly reduces all Drp1 oligomer populations (mitochondrial, peroxisomal, and ER bound) and mitochondrial division, whereas Mff targeting to ER has a stimulatory effect on division. Our results suggest that ER can function as a platform for Drp1 oligomerization, and that ER-associated Drp1 contributes to mitochondrial division.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Linhagem Celular Tumoral , Dinaminas , Retículo Endoplasmático/ultraestrutura , Forminas , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Multimerização Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
10.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918902

RESUMO

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dinaminas/genética , Dinaminas/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
11.
Cancer Res ; 77(18): 5054-5067, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765155

RESUMO

Elderly cancer patients treated with ionizing radiation (IR) or chemotherapy experience more frequent and greater normal tissue toxicity relative to younger patients. The current study demonstrates that exponentially growing fibroblasts from elderly (old) male donor subjects (70, 72, and 78 years) are significantly more sensitive to clonogenic killing mediated by platinum-based chemotherapy and IR (∼70%-80% killing) relative to young fibroblasts (5 months and 1 year; ∼10%-20% killing) and adult fibroblasts (20 years old; ∼10%-30% killing). Old fibroblasts also displayed significantly increased (2-4-fold) steady-state levels of O2•-, O2 consumption, and mitochondrial membrane potential as well as significantly decreased (40%-50%) electron transport chain (ETC) complex I, II, IV, V, and aconitase (70%) activities, decreased ATP levels, and significantly altered mitochondrial structure. Following adenoviral-mediated overexpression of SOD2 activity (5-7-fold), mitochondrial ETC activity and aconitase activity were restored, demonstrating a role for mitochondrial O2•- in these effects. Old fibroblasts also demonstrated elevated levels of endogenous DNA damage that were increased following treatment with IR and chemotherapy. Most importantly, treatment with the small-molecule, superoxide dismutase mimetic (GC4419; 0.25 µmol/L) significantly mitigated the increased sensitivity of old fibroblasts to IR and chemotherapy and partially restored mitochondrial function without affecting IR or chemotherapy-induced cancer cell killing. These results support the hypothesis that age-associated increased O2•- and resulting DNA damage mediate the increased susceptibility of old fibroblasts to IR and chemotherapy that can be mitigated by GC4419. Cancer Res; 77(18); 5054-67. ©2017 AACR.


Assuntos
Cisplatino/efeitos adversos , Fibroblastos/patologia , Mitocôndrias/patologia , Radiação Ionizante , Pele/patologia , Superóxidos/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Adulto Jovem
12.
Neuropharmacology ; 101: 291-308, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26456351

RESUMO

The endogenous neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is secreted by both neuronal and non-neuronal cells in the brain and spinal cord, in response to pathological conditions such as stroke, seizures, chronic inflammatory and neuropathic pain. PACAP has been shown to exert various neuromodulatory and neuroprotective effects. However, direct influence of PACAP on the function of intrinsically excitable ion channels that are critical to both hyperexcitation as well as cell death, remain largely unexplored. The major dendritic K(+) channel Kv4.2 is a critical regulator of neuronal excitability, back-propagating action potentials in the dendrites, and modulation of synaptic inputs. We identified, cloned and characterized the downstream signaling originating from the activation of three PACAP receptor (PAC1) isoforms that are expressed in rodent hippocampal neurons that also exhibit abundant expression of Kv4.2 protein. Activation of PAC1 by PACAP leads to phosphorylation of Kv4.2 and downregulation of channel currents, which can be attenuated by inhibition of either PKA or ERK1/2 activity. Mechanistically, this dynamic downregulation of Kv4.2 function is a consequence of reduction in the density of surface channels, without any influence on the voltage-dependence of channel activation. Interestingly, PKA-induced effects on Kv4.2 were mediated by ERK1/2 phosphorylation of the channel at two critical residues, but not by direct channel phosphorylation by PKA, suggesting a convergent phosphomodulatory signaling cascade. Altogether, our findings suggest a novel GPCR-channel signaling crosstalk between PACAP/PAC1 and Kv4.2 channel in a manner that could lead to neuronal hyperexcitability.


Assuntos
Dendritos/efeitos dos fármacos , Neurônios/citologia , Neurotransmissores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Canais de Potássio Shal/metabolismo , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Humanos , Masculino , Camundongos , Mutagênese/genética , Mutação/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
Mol Biol Cell ; 26(6): 1160-73, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609086

RESUMO

Recent genome-wide association studies reveal that the FAM13A gene is associated with human lung function and a variety of lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The biological functions of Fam13a, however, have not been studied. In an effort to identify novel substrates of B56-containing PP2As, we found that B56-containing PP2As and Akt act antagonistically to control reversible phosphorylation of Fam13a on Ser-322. We show that Ser-322 phosphorylation acts as a molecular switch to control the subcellular distribution of Fam13a. Fam13a shuttles between the nucleus and cytoplasm. When Ser-322 is phosphorylated by Akt, the binding between Fam13a and 14-3-3 is enhanced, leading to cytoplasmic sequestration of Fam13a. B56-containing PP2As dephosphorylate phospho-Ser-322 and promote nuclear localization of Fam13a. We generated Fam13a-knockout mice. Fam13a-mutant mice are viable and healthy, indicating that Fam13a is dispensable for embryonic development and physiological functions in adult animals. Intriguingly, Fam13a has the ability to activate the Wnt pathway. Although Wnt signaling remains largely normal in Fam13a-knockout lungs, depletion of Fam13a in human lung cancer cells causes an obvious reduction in Wnt signaling activity. Our work provides important clues to elucidating the mechanism by which Fam13a may contribute to human lung diseases.


Assuntos
Adipocinas/metabolismo , Núcleo Celular/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Citoplasma/metabolismo , Feminino , Células HEK293 , Humanos , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Sinais de Localização Nuclear , Ligação Proteica , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Via de Sinalização Wnt , Xenopus laevis
14.
J Biol Chem ; 289(32): 21950-9, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24939844

RESUMO

Abundant, sustained expression of prosurvival Mcl-1 is an important determinant of viability and drug resistance in cancer cells. The Mcl-1 protein contains PEST sequences (enriched in proline, glutamic acid, serine, and threonine) and is normally subject to rapid turnover via multiple different pathways. One of these pathways involves a phosphodegron in the PEST region, where Thr-163 phosphorylation primes for Ser-159 phosphorylation by glycogen synthase kinase-3. Turnover via this phosphodegron-targeted pathway is reduced in Mcl-1-overexpressing BL41-3 Burkitt lymphoma and other cancer cells; turnover is further slowed in the presence of phorbol ester-induced ERK activation, resulting in Mcl-1 stabilization and an exacerbation of chemoresistance. The present studies focused on Mcl-1 dephosphorylation, which was also found to profoundly influence turnover. Exposure of BL41-3 cells to an inhibitor of protein phosphatase 2A (PP2A), okadaic acid, resulted in a rapid increase in phosphorylation at Thr-163 and Ser-159, along with a precipitous decrease in Mcl-1 expression. The decline in Mcl-1 expression preceded the appearance of cell death markers and was not slowed in the presence of phorbol ester. Upon exposure to calyculin A, which also potently inhibits PP2A, versus tautomycin, which does not, only the former increased Thr-163/Ser-159 phosphorylation and decreased Mcl-1 expression. Mcl-1 co-immunoprecipitated with PP2A upon transfection into CHO cells, and PP2A/Aα knockdown recapitulated the increase in Mcl-1 phosphorylation and decrease in expression. In sum, inhibition of PP2A prevents Mcl-1 dephosphorylation and results in rapid loss of this prosurvival protein in chemoresistant cancer cells.


Assuntos
Linfoma de Burkitt/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Sítios de Ligação , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Toxinas Marinhas , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Ácido Okadáico/farmacologia , Oxazóis/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/genética , Proteólise , Serina/química , Acetato de Tetradecanoilforbol/farmacologia , Treonina/química
15.
J Biol Chem ; 288(17): 12353-65, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23486469

RESUMO

Fission and fusion events dynamically control the shape and function of mitochondria. The activity of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) is finely tuned by several post-translational modifications. Phosphorylation of Ser-656 by cAMP-dependent protein kinase (PKA) inhibits Drp1, whereas dephosphorylation by a mitochondrial protein phosphatase 2A isoform and the calcium-calmodulin-dependent phosphatase calcineurin (CaN) activates Drp1. Here, we identify a conserved CaN docking site on Drp1, an LXVP motif, which mediates the interaction between the phosphatase and mechanoenzyme. We mutated the LXVP motif in Drp1 to either increase or decrease similarity to the prototypical LXVP motif in the transcription factor NFAT, and assessed stability of the mutant Drp1-CaN complexes by affinity precipitation and isothermal titration calorimetry. Furthermore, we quantified effects of LXVP mutations on Drp1 dephosphorylation kinetics in vitro and in intact cells. With tools for bidirectional control of the CaN-Drp1 signaling axis in hand, we demonstrate that the Drp1 LXVP motif shapes mitochondria in neuronal and non-neuronal cells, and that CaN-mediated Drp1 dephosphorylation promotes neuronal death following oxygen-glucose deprivation. These results point to the CaN-Drp1 complex as a potential target for neuroprotective therapy of ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Motivos de Aminoácidos , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Calcineurina/genética , Calcineurina/metabolismo , Morte Celular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
16.
J Biol Chem ; 287(45): 37594-609, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22977251

RESUMO

The Ca(2+)/calcineurin-dependent transcription factor NFAT (nuclear factor of activated T-cells) is implicated in regulating dendritic and axonal development, synaptogenesis, and neuronal survival. Despite the increasing appreciation for the importance of NFAT-dependent transcription in the nervous system, the regulation and function of specific NFAT isoforms in neurons are poorly understood. Here, we compare the activation of NFATc3 and NFATc4 in hippocampal and dorsal root ganglion neurons following electrically evoked elevations of intracellular Ca(2+) concentration ([Ca(2+)](i)). We find that NFATc3 undergoes rapid dephosphorylation and nuclear translocation that are essentially complete within 20 min, although NFATc4 remains phosphorylated and localized to the cytosol, only exhibiting nuclear localization following prolonged (1-3 h) depolarization. Knocking down NFATc3, but not NFATc4, strongly diminished NFAT-mediated transcription induced by mild depolarization in neurons. By analyzing NFATc3/NFATc4 chimeras, we find that the region containing the serine-rich region-1 (SRR1) mildly affects initial NFAT translocation, although the region containing the serine-proline repeats is critical for determining the magnitude of NFAT activation and nuclear localization upon depolarization. Knockdown of glycogen synthase kinase 3ß (GSK3ß) significantly increased the depolarization-induced nuclear localization of NFATc4. In contrast, inhibition of p38 or mammalian target of rapamycin (mTOR) kinases had no significant effect on nuclear import of NFATc4. Thus, electrically evoked [Ca(2+)](i) elevation in neurons rapidly and strongly activates NFATc3, whereas activation of NFATc4 requires a coincident increase in [Ca(2+)](i) and suppression of GSK3ß, with differences in the serine-proline-containing region giving rise to these distinct activation properties of NFATc3 and NFATc4.


Assuntos
Cálcio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Estimulação Elétrica , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Immunoblotting , Microscopia Confocal , Fatores de Transcrição NFATC/genética , Células PC12 , Fosforilação , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transcrição Gênica
17.
J Neurosci ; 31(44): 15716-26, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049414

RESUMO

Mitochondrial shape is determined by fission and fusion reactions, perturbation of which can contribute to neuronal injury and disease. Mitochondrial fission is catalyzed by dynamin-related protein 1 (Drp1), a large GTPase of the dynamin family that is highly expressed in neurons and regulated by various posttranslational modifications, including phosphorylation. We report here that reversible phosphorylation of Drp1 at a conserved Ser residue by an outer mitochondrial kinase (PKA/AKAP1) and phosphatase (PP2A/Bß2) impacts dendrite and synapse development in cultured rat hippocampal neurons. PKA/AKAP1-mediated phosphorylation of Drp1 at Ser656 increased mitochondrial length and dendrite occupancy, enhancing dendritic outgrowth but paradoxically decreasing synapse number and density. Opposing PKA/AKAP1, PP2A/Bß2-mediated dephosphorylation of Drp1 at Ser656 fragmented and depolarized mitochondria and depleted them from dendrites, stunting dendritic outgrowth but augmenting synapse formation. Raising and lowering intracellular calcium reproduced the effects of dephospho-Drp1 and phospho-Drp1on dendrite and synapse development, respectively, while boosting mitochondrial membrane potential with l-carnitine-fostered dendrite at the expense of synapse formation without altering mitochondrial size or distribution. Thus, outer mitochondrial PKA and PP2A regulate neuronal development by inhibiting and promoting mitochondrial division, respectively. We propose that the bioenergetic state of mitochondria, rather than their localization or shape per se, is the key effector of Drp1, altering calcium homeostasis to modulate neuronal morphology and connectivity.


Assuntos
Dinaminas/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Proteína Fosfatase 2/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Análise de Variância , Animais , Carnitina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/fisiologia , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana Transportadoras , Microscopia Confocal , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/fisiologia , Tetrodotoxina/farmacologia , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia , Proteínas de Transporte Vesicular/metabolismo
18.
J Biol Chem ; 286(42): 36171-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21878643

RESUMO

The Hedgehog (Hh) pathway is evolutionarily conserved and plays critical roles during embryonic development and adult tissue homeostasis. Defective Hh signaling has been linked to a wide range of birth defects and cancers. Hh family proteins regulate the expression of their downstream target genes through the control of proteolytic processing and the transcriptional activation function of Gli transcription factors. Although Hh-dependent regulation of Gli has been studied extensively, other Gli regulatory mechanisms remain relatively unappreciated. Here we report our identification of a novel signaling cascade that controls the stability of Gli proteins. This cascade consists of Daz interacting protein 1 (Dzip1), casein kinase 2 (CK2), and B56 containing protein phosphatase 2As (PP2As). We provide evidence that Dzip1 is involved in a novel Gli turnover pathway. We show that CK2 directly phosphorylates Dzip1 at four serine residues, Ser-664/665/706/714. B56-containing PP2As, through binding to a domain located between amino acid residue 474 and 550 of Dzip1, dephosphorylate Dzip1 on these CK2 sites. Our mutagenesis analysis further demonstrates that the unphosphorylatable form of Dzip1 is more potent in promoting Gli turnover. Consistently, we found that the stability of Gli proteins was decreased upon CK2 inhibition and increased by inhibition of B56-containing PP2As. Thus, reversible phosphorylation of Dzip1, which is controlled by the antagonistic action of CK2 and B56-containing PP2As, has an important impact on the stability of Gli transcription factors and Hh signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Fosfatase 2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caseína Quinase II/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Mutagênese , Células NIH 3T3 , Fosforilação/fisiologia , Proteína Fosfatase 2/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Xenopus laevis , Proteína GLI1 em Dedos de Zinco
19.
J Biol Chem ; 286(30): 26496-506, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652711

RESUMO

The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Envelhecimento/fisiologia , Dendritos/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Knockout , Células Piramidais/citologia , Células Piramidais/metabolismo
20.
PLoS Biol ; 9(4): e1000612, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21526220

RESUMO

Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/fisiologia , Neurônios/fisiologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Dinaminas/metabolismo , Hipocampo/citologia , Hipocampo/enzimologia , Homeostase , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Forma das Organelas/efeitos dos fármacos , Fosforilação , Multimerização Proteica , Transporte Proteico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA